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Abstract

For a little over a century now, symmetry has played a foundational role in the development
of theoretical physics. Loosely, a higher symmetry is a differential operator which takes a
solution of the equations of motion for a system to a new solution of those equations of motion.
While originally studied by experts in general relativity analysing the Kerr spacetime and
subsequently by mathematicians in the context of separation of variables on manifolds, in
recent years higher symmetries have garnered renewed interest in high energy physics due
to the parallels between their algebra and higher spin algebras. In this thesis, I developed
techniques - especially emphasizing spinor methods - for computing higher symmetries in curved
spacetimes. As illustrative examples, the equations of motion I considered were the relativistic
wave equations for spin-0 and spin-1/2 massless particles. I mainly studied the cases when
the higher symmetry was a 1st or 2nd order differential operator. For both equations of
motion I was able to uniquely determine physically admissible candidates for 1st and 2nd
order higher symmetries in terms of conformal Killing vectors/tensors. However, only the 1st
order candidates actually proved to be higher symmetries on arbitrary manifolds possessing a
conformal Killing vector. Provided a conformal Killing tensor exists on the manifold, conformal
flatness was a sufficient, but perhaps not necessary, condition for the 2nd order candidates to
be higher symmetries. I finished by briefly exploring the potential for “conformal geometry”
to improve the efficiency of the calculations presented. All calculations were performed on an
arbitrary, four-dimensional, orientable, connected manifold of Lorentzian metric signature.
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Chapter 1

Introduction

Nothing in physics seems so hopeful to as the idea that it is possible for a theory to have a high
degree of symmetry [and be] hidden from us in everyday life. The physicist’s task is to find this
deeper symmetry.

- Steven Weinberg

The last hundred years or so has seen something of a revolution in how theoretical physi-
cists view the foundations of their subject. It is not just that we have more accurate or
sophisticated theories now. While the days of Newton’s laws are of course well and truly be-
hind us, we have also moved on from the mindset of those days. The ultimate test of any
theory is still its agreement with experiment, but there has been enormous upheaval in how
theoreticians formulate their ideas in the first place. No longer do physicists simply postulate
laws - equations of motion - to fit experiment like Kepler, Newton, Carnot or even Maxwell.
Instead, one now starts from symmetry [1]. Simply put, a symmetry is a system’s invariance
under a particular transformation. The first benefactor of the new age thinking - indeed one
its pioneers - was Einstein, in his formulation of special relativity. Rather than relativistic
invariance being a consequence of Maxwell’s equations, Maxwell’s equations were now largely
just a consequence of relativistic invariance. Ten years later, Einstein upturned the standard
worldview again with general relativity. In some sense, Einstein’s general theory of relativity
was grounded in the belief that physics must be invariant under an arbitrary change to the
reference system. Thus, the equations of motion had to transform covariantly under general
coordinate transformations. Simple enough to state, but profoundly consequential in terms of
physical implications to the description of gravity and the technical tools required to describe it.

However, several developments conspired to put symmetry on the pedestal it is placed to-
day. Through the 19th century, mathematicians too came to court symmetry. The path laid
by Galois, Cauchy and Cayley, pursued through to Klein’s Erlangen program meant that group
theory was here to stay. With group theory, physicists could not only appreciate thinking sym-
metrically, they could also describe it quantitatively. One of the first to wield the new power
was Wigner. With many striking applications of group theory, Wigner brought symmetry
to the fledgling quantum mechanics - in particular the theory of atomic spectra and isospin
symmetry [2]. By the late 1920s, Wigner had already proven that symmetries in quantum
mechanics are implemented by linear and unitary or - if time reversal was involved - antilinear
and antiunitary operators. But in special relativity, the fundamental symmetries are Poincaré
transformations. Therefore, to marry quantum mechanics and special relativity, one had to
study the unitary representations of the Poincaré group. In his famous 1939 treatise [3], Wigner
classified the irreducible representations by mass and spin - in the process explaining the origin
of spin, elucidating the meaning of elementary particle, deriving a fundamental distinction be-
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tween massive and massless particles and paving the path to modern formulations of quantum
field theory - see e.g. [4].

Group theory and symmetry have since become ingrained in the psyche of the modern theo-
retical physicist. In 1956, while visiting Russia, even the famously austere Dirac once used his
opportunity to present the honorary comment on a Moscow university blackboard by writing
“a physical law must possess mathematical beauty” - an inscription no-one has since dared to
erase. In this context, beauty is of course nothing but symmetry.

In summary, the story of modern theoretical physics is inextricably linked with the study
of symmetry in its myriad manifestations. Rather than the spacetime symmetries of interest
to Einstein and Wigner or the various internal and gauge symmetries present in quantum field
theory, I will discuss symmetries of the equations of motion themselves with a concept called
“higher symmetry.” While precise definitions are deferred to chapter 2, loosely speaking, higher
symmetries are differential operators, D, which map solutions of some other differential opera-
tor, D, to new solutions of the same operator - hence the term “symmetry.” The operator, D,
is typically an operator appearing in the equations of motion for some physically interesting
system. In recent years there has been a renewed interest in the subject as various connections
have emerged between higher spin algebras, the AdS/CFT correspondence and the algebra
built from linear combinations and compositions of higher symmetries.

The main task of my thesis will be to develop and present techniques to compute higher
symmetries in curved spacetimes. Rather than an algorithmic general theory, the formalism is
best illustrated via specific examples. As such, I will be focused on two operators in particular.
In chapter 3, I will consider the conformal d’Alembertian, D = ∆ = � − 1

6
R, acting on a

scalar field, ϕ, and in chapter 4, I will consider the massless Dirac operator, γa∇a, acting on a
four-component Dirac spinor, Ψ. These operators represent conformally invariant relativistic
wave equations for massless spin-0 and spin-1/2 particles. Some of the longer proofs associated
with results in these chapters are contained in appendices B and C. In finding higher sym-
metries, I will especially emphasize spinor methods. Not only are they natural when working
with the Dirac operator, they also make many properties of some tensors and differential op-
erator contractions more transparent. Given the heavy reliance on spinors - and especially the
two-component formalism - I have provided a comprehensive account of spinors in appendix
D. Further notational conventions and frequently used identities are listed in appendices E
and F respectively. While I did most of my calculations using standard differential geometry,
in chapter 5, I will present the case for “conformal geometry” as a superior alternative when
dealing with conformally invariant operators and conformal field theories in general.

But before all that, I will begin in chapter 2 (while briefly referring to appendix A in the
process) with a slightly more extended review of symmetry in general relativity. This will
serve to give more quantitative motivation for the study of higher symmetries while also intro-
ducing many definitions and theorems which will be foundational to the later chapters.
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Chapter 2

Symmetries and higher symmetries in
general relativity

In this chapter I will briefly recount the remarkable story of symmetry within the context of
general relativity and classical field theory more broadly. Concurrently, I will build towards
the research topic I will be studying in subsequent chapters. Unlike the rest of the thesis, in
this chapter I will occasionally devolve responsibility for proofs to various references.

With the benefit of hindsight, it is fair to say symmetry’s most starring role in physics is
its ability to constrain the form of action functionals and subsequently apply Noether’s theo-
rem to generate conserved quantities [5]. For a taster, first consider classical field theory in flat
space - the domain governed by special relativity. Note that it will also almost certainly help
to read appendices E and F at some point before the end of this chapter.

Theorem 2.1 (Noether). For every (infinitesimal) continuous transformation of matter fields,
δϕI = XI(ϕ, ∂aϕ), that changes the Lagrangian density, L, by a total derivative1, δL = ∂aF

a,
the vector,

ja =
∂L

∂(∂aϕI)
XI − F a , (2.1)

is a conserved current, i.e. ∂aj
a = 0.

Proof. Upon an infinitesimal variation to the matter field, δϕI = XI(ϕ, ∂aϕ),

δL =
∂L
∂ϕI

XI +
∂L

∂(∂aϕI)
∂a(X

I) . (2.2)

Therefore,

∂aF
a =

(
∂L
∂ϕI
− ∂a

(
∂L

∂(∂aϕI)

))
XI + ∂a

(
∂L

∂(∂aϕI)
XI

)
. (2.3)

Hence, when the Euler-Lagrange equations hold,

0 = ∂a

(
∂L

∂(∂aϕI)
XI − F a

)
, (2.4)

which is exactly ∂aj
a = 0. �

1If L changes by a total derivative, the action is invariant, which is why δϕI = XI(ϕ, ∂aϕ) can be called a
“symmetry” of the system.
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Corollary 2.1.1. Q =
∫
j0(~x, t) d3~x is conserved, i.e. dQ

dt
= 0.

Proof. Rewriting ∂aj
a = 0 as ∂0j

0 + ~∇ ·~j = 0,

dQ

dt
=

∫
∂j0(~x, t)

∂t
d3~x = −

∫
~∇ ·~j(~x, t)d3~x = 0 , (2.5)

under the standard assumption that fields vanish sufficiently quickly at infinity. �

Integrating a continuous, infinitesimal symmetry, XI , naturally leads to a finite symmetry; XI

effectively “generates” a finite symmetry.
Therefore, the study of symmetry in physics is intimately connected with the application of Lie
group theory, where elements of the Lie algebra are the generators and the exponential map
“integrates” the infinitesimal elements to produce a finite group element - see e.g. [6] complete
mathematical details.

The fundamental postulates of special relativity can then be re-framed as saying the symmetry
group of spacetime is the ten-dimensional, proper, orthochronous Poincaré group, ISO↑(3, 1).
A convenient choice of basis in its Lie algebra2, io(3, 1), is one consisting of the generators
of spacetime translations, Pa, and Lorentz transformations, Mab = −Mba, with defining Lie
brackets,

[Mab,Mcd] = 2ηd[aMb]c − 2ηc[aMb]d,

[Pa,Mbc] = 2ηa[bPc],

[Pa, Pb] = 0 (2.6)

Applying Noether’s theorem to infinitesimal spacetime translations, rotations and boosts leads
to the conservation of total four-momentum, total angular momentum and velocity of the cen-
tre of energy of the system respectively [5]. However, Noether’s theorem is not just applicable
for spacetime symmetries. One can consider gauge symmetries, internal symmetries etc. and
there exists a generalised Noether’s theorem to accommodate for them all - see e.g. [7]. While
fascinating in its own right, it is somewhat tangential to my research topic.

From hereon, I will be working in curved space - the domain governed by general relativ-
ity. For the rest of the thesis, I will be working on an arbitrary, connected, four-dimensional,
orientable manifold equipped with a Lorentzian metric. In curved space the story is more
subtle. Not only are there matter fields, the metric, gmn(x), is itself dynamical3. Matter fields
contribute to the energy momentum tensor, Tmn(x), but the metric - and hence the gravita-
tional field - does not directly. Rather than Noether’s theorem, for spacetime symmetries in
curved space, it will be more fruitful to take an alternative perspective.

ISO↑(3, 1) is the symmetry group of flat space; the task is to find the equivalent for a curved
spacetime. The main defining property of ISO↑(3, 1) is that for any (Λ, a) ∈ ISO↑(3, 1), the
spacetime interval is preserved4 under x′a = Λa

bx
b + aa, i.e. Poincaré transformations are

isometries of the flat space metric, ηab.
Thus, to find the symmetry group of a manifold, one must find its isometries. While objects

2As IO(3, 1), ISO(3, 1) and ISO↑(3, 1) all share the same neighbourhood of the identity, all of io(3, 1), iso(3, 1)
and iso↑(3, 1) are the same.

3For now, I will treat the metric as fundamental, rather than the vierbein/tetrad, e m
a . This will not be the

perspective I will take later, but it will be more convenient for now.
4The Λ0

0 ≥ 1 and det(Λ) = 1 conditions pick out the connected component (based on the manifold structure
of the Lie group) of the identity element, (I, 0), and thereby prevent space or time inversions.
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transform tensorially under general coordinate transformations in general relativity, there are
actually no pre-conditions on the isometries of the metric. The same way Noether’s theo-
rem considers infinitesimal symmetries and then builds finite symmetries via the Lie group-Lie
algebra correspondence, the standard approach is to consider infinitesimal spacetime transfor-
mations which leave the metric invariant.
Let x′m = xm − ξm(x) be an infinitesimal spacetime transformation. By the tensor transfor-
mation law,

g′mn(x′) =
∂xp

∂x′m
∂xq

∂x′n
gpq(x) (2.7)

Since I’m only working to 1st order in ξm(x) for an infinitesimal transformation,

∂x′m

∂xn
= δmn − ∂nξm(x) =⇒ ∂xm

∂x′n
= δmn + ∂nξ

m(x) . (2.8)

Together, they imply

g′mn(x′) = gmn(x) + ∂m(ξp(x))gpn(x) + ∂n(ξp(x))gpm(x) . (2.9)

Then,

δgmn(x) = g′mn(x)− gmn(x)

= gmn(x+ ξ) + ∂m(ξp(x+ ξ))gpn(x+ ξ) + ∂n(ξp(x+ ξ))gpm(x+ ξ)− gmn(x)

= ξp(x)∂pgmn(x) + ∂m(ξp(x))gpn(x) + ∂n(ξp(x))gpm(x) . (2.10)

As with almost anything in differential geometry, tensorial equations are preferable. In this
case, the required expression turns out to be ∇mξn +∇nξm since

∇mξn +∇nξm = ∂mξn + ∂nξm − Γpmnξp − Γpnmξp

= ∂m(gpnξ
p) + ∂n(gpmξ

p)− ξp(∂mgnp + ∂ngpm − ∂pgmn)

= δgmn . (2.11)

Therefore, ξm(x) induces an isometry of the metric if and only if ∇mξn +∇nξm = 0.

Definition 2.2 (Killing vector). A four-vector, ξm(x), is known as “Killing” if and only if

∇mξn +∇nξm = 0 ⇐⇒ ∇(mξn) = 0 . (2.12)

Theorem 2.3. The set of Killing vectors forms a Lie algebra.

Proof. Since the defining condition, ∇mξn+∇nξm = 0 is a linear PDE, the set of Killing vectors
automatically forms a vector space. All that is left to show is that given two Killing vectors,
ξm and ζm, their Lie bracket, [ξ, ζ]m = ξn∂nζ

m − ζn∂nξm, also satisfies the defining condition.
See [8] for a proof of that property. �

Then, the Lie group-Lie algebra correspondence can be used to generate finite spacetime sym-
metries, eξ

m(x)∂m , and such elements from a subgroup of the symmetry group of the manifold5.

Just as Noether’s theorem generates conserved quantities from symmetries, Killing vectors
too generate conserved quantities - most famously along geodesics. Recall that if λ is an affine
parameter for a geodesic, then a particle’s position along the geodesic, xm(λ), satisfies

dxn(λ)

dλ
∇n

dxm(λ)

dλ
= 0 ⇐⇒ d2xm(λ)

dλ2
+ Γmnp(x(λ))

dxn(λ)

dλ

dxp(λ)

dλ
= 0 . (2.13)

5The manifold can be “geodesically incomplete,” so calculating eξ
m(x)∂m alone can leave the story of manifold

symmetries incomplete too.
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Theorem 2.4. For any Killing vector, ξm(x),

ξm(x(λ))
dxm(λ)

dλ
(2.14)

is conserved along a geodesic.

Proof.

d

dλ

(
ξm

dxm

dλ

)
=

dxn

dλ
∂n

(
ξm

dxm

dλ

)
=

dxn

dλ
∇n

(
ξm

dxm

dλ

)
as ξm

dxm

dλ
is a scalar

=
dxn

dλ

dxm

dλ
∇nξm + ξm

dxn

dλ
∇n

dxm

dλ

=
dxn

dλ

dxm

dλ
∇(nξm) + 0 by the geodesic equation

= 0 by the Killing condition (2.15)

�

In classical mechanics, one can circumvent differential equations by determining conserved
quantities and analysing the subsequent algebraic equations. Likewise, in curved space, one
can avoid solving the geodesic equation directly by finding the metric’s Killing vectors and
utilising the corresponding conserved quantities. However, sometimes a metric possesses fewer
independent Killing vectors than required to completely determine a particle’s motion.

The middle of the 20th century saw a spectacular new development in the analysis of free-fall
trajectories. Unlike the Schwarzschild and Reissner-Nordstrøm metrics, which were discovered
early in the development of general relativity, it took until 1963 to determine the Kerr metric6,

(ds)2 = −(dt)2 +
r2 + a2cos2(θ)

r2 − 2GMr + a2
(dr)2 + (r2 + a2cos2(θ))(dθ)2 + (r2 + a2) sin2(θ)(dφ)2

+
2GMr

r2 + a2cos2(θ)
(a sin2(θ)dφ− dt)2, (2.16)

to describe a rotating black hole - see e.g. [9] for a brief review. Here, M is the black hole’s
mass and a is a constant measuring its rotation. The lack of spherical symmetry meant it was
a much more technically challenging task to determine geodesics in the Kerr spacetime. There
are still two Killing vectors, ∂t and ∂φ, but it turns out they are insufficient to completely
specify trajectories7. The crucial piece of insight was that the Kerr metric possesses something
higher order than a Killing vector.

Definition 2.5 (Killing tensor). A symmetric tensor, ξm1···ma(x), is called “Killing” if and
only if

∇(nξm1···ma) = 0 . (2.17)

Theorem 2.6. For any Killing tensor ξm1···ma(x),

ξm1···ma(x(λ))
dxm1(λ)

dλ
· · · dx

ma(λ)

dλ
(2.18)

is conserved along a geodesic.
6I have stated the Kerr metric here in Boyer-Lindquist coordinates.
7∂t and ∂φ can be seen to be Killing vectors because none of the components of the metric are dependent

on t or φ. Hence, translations along the t or φ direction leave the metric invariant.
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Proof.

d

dλ

(
ξm1···ma

dxm1

dλ
· · · dx

ma

dλ

)
=

dxn

dλ
∂n

(
ξm1···ma

dxm1

dλ
· · · dx

ma

dλ

)
=

dxn

dλ
∇n

(
ξm1···ma

dxm1

dλ
· · · dx

ma

dλ

)
=

dxn

dλ

dxm1

dλ
· · · dx

ma

dλ
∇nξm1···ma

+ ξm1···ma

a∑
i=1

dxm1

dλ
· · · d̂x

mi

dλ

dxma

dλ

dxn

dλ
∇n

dxmi

dλ

=
dxn

dλ

dxm1

dλ
· · · dx

ma

dλ
∇(nξm1···ma) + 0

= 0 (2.19)

�

Not every Killing tensor of rank ≥ 2 can be written as a product of lower order Killing tensors
or Killing vectors8 [8]. Hence, going to higher orders has the potential to reveal previously
undetected conserved quantities. Indeed, for the Kerr spacetime it was discovered

ξmn = 2(r2 + a2cos2(θ))A(mBn) + r2gmn where

Am ≡
1

r2 − 2GMr + a2

(
r2 + a2, r2 − 2GMr + a2, 0, a

)
and

Bm ≡
1

2(r2 + a2cos2(θ))

(
r2 + a2,−r2 + 2GMr − a2, 0, a

)
, (2.20)

is a Killing tensor and greatly simplifies the analysis - see [9] for further detail. Likewise, in this
thesis it will prove to be fruitful to work with higher rank tensors, rather than only vectors, to
unearth higher symmetries.

However, my project will not deal with standard general relativity. Instead, I will be con-
cerned with conformal field theory. To describe exactly what this means, I will begin by
slightly changing the differential geometry perspective I employ. Rather than work with curved
space indices, for the rest of my thesis it will be essential to work in the vierbein approach
to differential geometry9. A vierbein is a new tangent space basis, {e m

a (x)∂m}3a=0, such that
ηab = e m

a (x)e n
b (x)gmn(x) for all points, x, in the manifold. The vierbein is now the funda-

mental field and the metric, gmn(x) = e a
m (x)e b

n (x)ηab where e a
m is the inverse matrix of e m

a ,
is derived from the vierbein. Since a choice of vierbein is only unique up to local Lorentz
transformations, e′ ma (x) = (Λ−1)ba(x)e m

b (x) for Λa
b(x) ∈ SO↑(3, 1) allows one to construct

local representations of the Lorentz group.
Therefore, in the vierbein approach, field theories are covariant not just under general coordi-
nate transformations, but also local Lorentz transformations.
Adopting the vierbein approach allows me to deploy the spinor formalism10 and thereby de-
scribe the dynamics of half integer spin particles in curved space.

8In somewhat technical language, not all Killing tensors can be seen as elements of the universal enveloping
algebras of lower order Killing tensors and Killing vectors.

9Although I didn’t use it for that purpose, the vierbein approach works fine for general relativity too; it is
nothing specific to conformal field theory.

10For my spinor conventions, see appendix E. For a comprehensive introduction to spinors, see appendix D.
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The fundamental, new feature of conformal field theory lacking in general relativity is in-
variance under “Weyl transformations.”

Definition 2.7 (Weyl transformation). A Weyl transformation is a change to the vierbein of
the form, e′ ma (x) = eσ(x)e m

a (x), for some scalar field, σ(x).

In a conformal field theory, the vierbein, inverse vierbein, metric etc. are only relevant up to
scale. Note that the theory’s invariance under Weyl transformations can be predicated on a
corresponding transformation to the matter fields - this is exactly analogous to the quantum
mechanics of particles in an electromagnetic field where a gauge transformation to the fields
requires a point dependent phase transformation to the wavefunction for the equations of mo-
tion to remain unchanged.

In this thesis, rather than attempt to characterise symmetries of action functionals or space-
times, I will be studying symmetries of the equations of motions themselves. In particular, I
will analyse two differential operators which turn up in conformal field theory - namely the
conformal d’Alembertian, ∆ = ∇a∇a − 1

6
R, and the massless Dirac operator, γa∇a. When

quantised - although the actual quantisation is beyond the scope of my thesis - these equations
turn up in the description of massless spin-0 and spin-1/2 particles respectively.

Analogous with the study of symmetry in general relativity, I will need the conformal ver-
sions of Killing vectors and tensors to describe the symmetries I will be studying.

Definition 2.8 (Conformal Killing vector). A vector, ξa(x), is called “conformal Killing” if
and only if

∇aξb +∇bξa =
1

2
ηab∇cξ

c . (2.21)

Definition 2.9 (Conformal Killing tensor). A symmetric and traceless tensor, ξa1···an(x), is
called “conformal Killing” if and only if the traceless part of ∇(bξa1···an) is zero.

Note that the former definition is just a special case of the latter definition.
Since I am interested in symmetries of the equations of motion, rather than study isometries of
the vierbein or metric, it makes sense to study the transformations which leave the covariant
derivative unchanged.

Theorem 2.10. Under infinitesimal general coordinate, local Lorentz and Weyl transforma-
tions, i.e. x′m = xm − ξm(x), e′ ma (x) = e m

a (x) + K b
a (x)e m

b (x) with Kab = −Kba and
e′ ma (x) = (1 +σ(x))e m

a (x) respectively (ξm, Kab and σ all infinitesimal), the covariant deriva-
tive changes as

δ∇a =

[
ξb∇b +

1

2
KbcMbc,∇a

]
+ σ∇a −∇b(σ)Mab . (2.22)

Furthermore, δ∇a = 0 if and only if ξa(x) is a conformal Killing vector, Kbc = 1
2
(∇bξc−∇cξb)

and σ = 1
4
∇aξ

a.

Proof. See [10] or appendix A. �

If one is dealing with a conformal field theory, the theorem means that under the conformal
Killing vector based transformation just described, the physics is unchanged11. However, the

11General coordinate transformations, local Lorentz transformations and Weyl transformations are all part
of the symmetry group of a conformal field theory.
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matter fields must change to compensate. Since the equations of motion will be built on ∇a,
they will stay the same upon δ∇a.
Therefore, the new matter fields will satisfy the same equations of motion as the old matter
fields, i.e. the conformal Killing vector based transformation induces a symmetry operation on
the matter fields. It is the main task of my thesis to study the symmetries that may arise.

First consider x′m = xm − ξm(x). Then, if a matter field is described by a tensor field12,
T (x), since ξm is infinitesimal,

δT (x) = T ′(x)− T (x)

= T ′(x′ + ξ)− T (x)

= T ′(x′) + ξm(x′)∂mT
′(x′)− T (x) to first order

= ξm(x)∂mT (x)

= ξa(x)∇aT (x)− 1

2
ξb(x)ωbcd(x)M cdT

= ξa(x)∇aT (x)− 1

2
K̃bc(x)MbcT (2.23)

where K̃bc = ξdω
dbc. Likewise, under a local Lorentz transformation,

δT =
1

2
Kbc(x)MbcT, (2.24)

and a more complicated transformation may arise based on the Weyl transformation. However,
in all three cases, δT takes the form of a 1st order differential operator13 acting on T . Further-
more, when Kbc and σ are determined in terms of ξa as per theorem 2.10, all “coefficients” in
the differential operator are also determined in terms of ξa.
The net result is that in a conformal field theory, a conformal isometry induced by a conformal
Killing vector, ξa(x), induces a first order differential operator symmetry on the matter fields.
Motivated by this result, I will be studying symmetries of the following type.

Definition 2.11 (Higher symmetry). Given a differential operator, D, acting on a tensor
field, T , a higher symmetry is a scalar14, linear, differential operator, D, such that DDT = 0
whenever DT = 0.

Corollary 2.11.1. Provided D is a non-degenerate differential operator, D is a higher sym-
metry if and only if DD = D′D for some other differential operator, D′.

I will usually adopt the former definition in this thesis. These operators, D, are symmetries
in that they take solutions to solutions. They are “higher” in the sense that D may not be a
first order differential operator and there is no a priori link between D and conformal Killing
vectors. A higher symmetry is a linear operator by definition. In principle, one could also
look for non-linear transformations that take solutions to solutions, but I won’t do that for
simplicity and also because it can be shown that in many cases non-linear symmetries do not
exist anyway [11].

12I will suppress the indices on the tensor field, T (x). The only assumption I make is that T (x) does not
have any curved space indices. This is fine because given any tensor, it can be converted into a tensor without
curved space indices via vierbeins and inverse vierbeins. Thus, T (x) is a general coordinate scalar.

13In the terminology I will employ in this thesis, Lorentz generators will count as 1st order differential
operators because they appear in theorem 2.10 and they are related to the commutator of two covariant
derivatives.

14D is a scalar in the sense that DT is the same tensor type as T .
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Once one finds an nth order symmetry operator, D, it immediately implies the existence
of symmetry operators of order kn for any k ∈ N, namely Dk, D composed with itself k times.
Therefore, an equation of motion possessing a 1st order symmetry operator - e.g. as equations
of motions for matter fields in conformal field theories should by the reasoning above - possesses
symmetry operators of all orders.
However, it may be the case that not all symmetry operators can be written as a composition
of lower order symmetries. Thus, there is still the possibility of unearthing a truly “higher”
symmetry, just as the Killing tensor in the Kerr metric provided a new conserved quantity not
derivable from the Killing vectors alone. Hence, it still pays to study higher order symmetries
and study symmetries of different orders separately.

The original motivation for studying higher symmetries was a purely mathematical task -
the solution of partial differential equations on non-trivial manifolds. Unlike the textbook sep-
aration of variables typically taught in the undergraduate curriculum, the best that could be
hoped for on arbitrary manifolds for most equations was the following [12, 13].

Definition 2.12 (R-separability). Let D be a linear, partial differential operator acting on
a tensor field15, T (x). Then, D is said to be R-separable if and only if both of the following
conditions hold.

• ∃ four functions, T (m)(xm), each depending on only one of x0, x1, x2 or x3 and ∃ a
function, R(x), such that

T (x) = R(x)
3∏

m=0

T (m)(xm) . (2.25)

• For each T (m)(xm), ∃ a linear, ordinary differential operator, D(m), such that T (x) sat-
isfies DT (x) = 0 whenever all four of the T (m)(xm) satisfy D(m)T (m)(xm) = 0.

When R(x) = 1, this definition reduces to the textbook definition. On the surface, R-
separability seems to have nothing to do with symmetry operators. However, by the 4th
quarter of the 20th century many deep connections between the existence of R-separable coor-
dinate systems, higher symmetries and Lie group theory were discovered, including attempts to
classify separable coordinate systems based on higher symmetries’ eigenfunctions and spectra
[14, 7, 12]. In many ways this development was a throwback to Sophus Lie’s original motiva-
tion for studying the concepts that today bear his name. Like my discussion on the existence
of 1st order symmetries for conformally invariant equations of motion, he too was looking at
the effect of local transformations on differential equations - trying to find similarities between
equations previously thought to be disparate. In the early development of R-separability, much
of the progress was made on the Kerr spacetime. It was convenient - it had a known metric
of moderate symmetry and a known Killing tensor. But in subsequent years, the theory has
grown to a wide variety of manifolds and encompasses many famous equations from mathe-
matical physics [12]. Again, it is fascinating, but tangential to my thesis, so I will not dwell on
it any longer.

Another reason to study higher symmetries is the associative algebra generated by composing
and taking linear combinations of higher symmetries. In the last two decades or so, a number
of deep connections have emerged between the algebra of higher symmetries and the algebra
of various higher spin fields. In conjunction with the AdS/CFT correspondence, these devel-
opments have brought a renewed focus on computing the higher symmetries of the equations

15Again, I have suppressed indices on T .
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of motion of free, massless particles [15, 16]. Before the higher symmetry algebra is useful for
application though, it requires some refinement.

Definition 2.13 (Equivalence relation of symmetries). Given two higher symmetries, D1 and
D2, of a differential operator, D, let D1 ∼ D2 if and only if D1 − D2 = dD for some other
differential operator, d. Then, ∼ is an equivalence relation.

Proof. D1 −D1 = 0 = 0×D =⇒ ∼ is reflexive.
If D1 ∼ D2, then ∃ d such that D1 −D2 = dD =⇒ D2 −D1 = −dD =⇒ ∼ is symmetric.
Let D1 ∼ D2 and D2 ∼ D3. Hence ∃ d1, d2 such that D1 −D2 = d1D and D2 −D3 = d2D
=⇒ D1 −D3 = (d1 + d2)D =⇒ ∼ is transitive.
Therefore, ∼ is indeed an equivalence relation. �

Two symmetries linked by ∼ are essentially trivially related. It is not interesting to treat
them as separate objects. Instead, the much richer algebra is the one consisting of equivalence
classes of symmetries under ∼. Therefore, throughout the work, it will suffice to find a single
representative for each equivalence class. Thinking in terms of equivalence classes is identical
to the following.

Lemma 2.14. The set of trivial higher symmetries, D = dD, forms a two-sided ideal in the
algebra of higher symmetries.

Proof. Let D be a trivial symmetry and let ρ be an arbitrary higher symmetry.
Therefore, D = dD for some differential operator, d, and Dρ = ρ′D for some differential
operator, ρ′.
Hence, ρD = ρdD = (ρd)D =⇒ ρD is a trivial symmetry.
Likewise, Dρ = dDρ = dρ′D = (dρ′)D =⇒ Dρ is a trivial symmetry too. �

The set of equivalence classes discussed above is nothing but the algebra of higher symmetries
quotient-ed by the two-sided ideal of trivial higher symmetries. As a matter of personal taste,
I will largely talk in terms of equivalence classes as opposed to quotient algebras. However, the
quotient algebra perspective has proven to be useful in higher spin field theory applications [16].

At a practical level, the equivalence relation will be extensively used in sections 3.2 and 4.2
to simplify the terms appearing in potential symmetry operators. For example, it is possible
that D1T 6= D2T unless DT = 0. That can only happen if D1 − D2 = dD for some d, or
equivalently D1 ∼ D2. Even before the equivalence relation though, it might be that D1 6= D2,
but D1T = D2T because of the specific form of the tensor16, T . In such scenarios, I shall
consider D1 to be equivalent to D2 provided it is clear only D1 and D2’s actions on a particular
tensor type are relevant.

But first, to make progress on separation of variables or higher spin fields in the ways I have
outlined, one must actually know the higher symmetries of different differential operators; it
will be my task to develop techniques to compute them. As aforementioned, I will be focused
on two operators in particular. They are the conformal d’Alembertian, D = ∆ = � − 1

6
R,

acting on a scalar field, ϕ, and the massless Dirac operator, γa∇a, acting on a four-component
Dirac spinor, Ψ. Conformal Killing vectors and tensors will make numerous appearances in
subsequent chapters, but actually finding a conformal Killing vector or tensor on a given man-
ifold (if one exists) is beyond the scope of my thesis.

16For example, such a situation may arise if T is a scalar and D1 and D2 differ by a Lorentz generator.
Lorentz generators annihilate scalars and so D1 and D2 still give the same result when acting on T , even
though D1 and D2 are not strictly equal.
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Several papers discussing similar topics have been published in recent years - see [17, 18, 19]
for examples. The most complete account though, is [20], which contains some overlap with
and extensions to the results I will derive about 2nd order symmetry operators. Despite some
similarities in techniques, my work is completely independent17.

17Also, they did most of their calculations on Mathematica where as I did them by hand.
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Chapter 3

Higher symmetries of the conformal
d’Alembertian

3.1 Action for the conformal d’Alembertian

The conformal d’Alembertian, ∆, is defined as

∆ = �− 1

6
R = ∇a∇a −

1

6
R . (3.1)

In this thesis, I will only be concerned with the action of ∆ on scalar fields, ϕ(x). As a first
step towards the equation I will be analysing, ∆ϕ = 0, consider the theory of a free, massless,
real, scalar field in flat space. It is described by the action,

S = −1

2

∫
∂a(ϕ)∂a(ϕ) d4x , (3.2)

which has the massless Klein-Gordon equation, �ϕ = 0, as the equation of motion. When
lifting an action to curved space, the standard procedure is to change partial derivatives to
covariant derivatives and change the integration measure from d4x to e d4x where e is det(e a

m ).
However, this procedure is incomplete. Actions differing only by curvature factors coincide in
flat space. For the free, massless, real, scalar field, one possible resolution is to impose that
the action should be invariant under Weyl transformations in curved space. Then, it can be
shown the curvature terms are fixed so that

S = −1

2

∫ (
∇a(ϕ)∇a(ϕ) +

1

6
Rϕ2

)
e d4x where e = det(e a

m ) (3.3)

and S is invariant under the Weyl transformation, e′ ma (x) = eσ(x)e m
a (x), provided

ϕ′(x) = eσ(x)ϕ(x). Finally, the equation of motion for ϕ from this action is ∆ϕ = 0.

This same action can be derived - along with its Weyl transformation properties - from an
alternative, but equally interesting, perspective. Consider the following “Weyl invariant” for-
mulation of (vacuum) general relativity described in [10]. The key idea is the observation that
given an action, S[e m

a ], constructed entirely out the vierbein, S[e m
a /ϕ] is invariant upon a

Weyl transformation, e m
a → eσe m

a and ϕ→ eσϕ for arbitrary scalar fields, σ(x). Hence, given
any field theory, introducing a gauge field, ϕ(x), makes the field theory Weyl invariant1. I will
apply the formalism to the Einstein-Hilbert action,

S =
1

16πG

∫
Re d4x . (3.4)

1If S[e m
a /ϕ] = S[e m

a ], it means S[e m
a ] was already a conformal field theory.

14



Hence, denoting all new variables with primes, e′ = det(e a
m ϕ) = eϕ4. Since e′ ma = e m

a /ϕ is
formally identical to a Weyl transformation with eσ = 1/ϕ, one immediately gets

R′ =
1

ϕ2

(
R + 6�

(
ln

(
1

ϕ

))
− 6∇a

(
ln

(
1

ϕ

))
∇a

(
ln

(
1

ϕ

)))
= (R− 6�(ln(ϕ))− 6∇a(ln(ϕ))∇a(ln(ϕ)))/ϕ2 . (3.5)

Then, since ∇a = e m
a ∇m and ∇m = ∂m when acting on a scalar, ∇a(ln(ϕ)) = ∇a(ϕ)/ϕ.

Therefore,

�(ln(ϕ)) = ∇a(∇a(ϕ)/ϕ)

= −∇
a(ϕ)∇a(ϕ)

ϕ2
+

�(ϕ)

ϕ
, (3.6)

which yields

R′ =
R

ϕ2
+

6∇a(ϕ)∇a(ϕ)

ϕ4
− 6�(ϕ)

ϕ3
− 6∇a(ϕ)∇a(ϕ)

ϕ4

=
R

ϕ2
− 6�(ϕ)

ϕ3
. (3.7)

Thus,

R′e′ = Reϕ2 − 6eϕ�(ϕ) . (3.8)

It will be more convenient to re-write the 2nd term with ϕ�(ϕ) = ∇a(ϕ∇aϕ) −∇a(ϕ)∇a(ϕ)
since

∫
∇a(ϕ∇aϕ)e d4x = 0 by the generalised Stokes’ theorem. The action is then

S ′ =
1

16πG

∫
R′e′ d4x =

1

16πG

∫
(Rϕ2 + 6∇a(ϕ)∇a(ϕ))e d4x . (3.9)

Finally varying S ′ with respect to ϕ,

δS ′ =
1

16πG

∫
(2Rϕδϕ+ 12∇a(ϕ)∇a(δϕ))e d4x . (3.10)

However, ∇a(ϕ)∇a(δϕ) = ∇a(∇a(ϕ)δϕ)−�(ϕ)δϕ and the first term on the RHS integrates to
zero. Hence finally,

δS ′ =
1

8πG

∫
(Rϕ− 6�(ϕ))δϕe d4x (3.11)

and therefore the Euler-Lagrange equation for the gauge field, ϕ(x), is ∆ϕ = 0. It is this
final equation whose symmetries I will consider in this chapter. Substantial work along this
endeavour has already been attempted by Eastwood [17].

3.2 Structure of the symmetry operators

As per definition 2.11, candidate symmetries, D, must be scalar combinations of ∇a, Mab and
tensor coefficients, ξa1···an(x).

Lemma 3.1. Lorentz generators do not appear in higher symmetries of ϕ.
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Proof. Since ϕ is a scalar, Mab ϕ = 0.
Therefore, any Mab that appear must appear on the left of derivatives acting on ϕ. However,

Mab∇c1 · · · ∇ckϕ =
k∑
i=1

(ηcia∇c1 · · · ∇b · · · ∇ck − ηcib∇c1 · · · ∇a · · · ∇ck)ϕ , (3.12)

which is a sum of terms with k derivatives on ϕ, but no Lorentz generator.
Hence, all Mab s can be absorbed into terms with no Lorentz generator on them. Thus by
∼, the equivalence 2.13, there is no need to consider symmetries with Mab as there will be
symmetries without Lorentz generators in the same equivalence class. �

Therefore, to ensure that the differential operator is scalar, and noting that derivatives acting
on tensors other than ϕ can be absorbed into lower order terms, the most general nth order
symmetry of ∆ is

D(n) =
n∑
k=0

ξa1···ak∇a1 · · · ∇ak . (3.13)

Lemma 3.2. Any coefficient of a term with multiple derivatives can be taken to be symmetric
and traceless.

Proof. Consider the action of a term with multiple derivatives, i.e.

ξa1···ak∇a1 · · · ∇ak , (3.14)

on the scalar field, ϕ. Suppose there is an antisymmetric component between the ith and jth
indices of ξa1···ak . Then,

ξa1···ak∇a1 · · · ∇ak

=
1

2
(ξa1···ai···aj ···ak + ξa1···aj ···ai···ak)∇a1 · · · ∇ak +

1

2
(ξa1···ai···aj ···ak − ξa1···aj ···ai···ak)∇a1 · · · ∇ak

=
1

2
(ξa1···ai···aj ···ak + ξa1···aj ···ai···ak)∇a1 · · · ∇ak

+
1

2
ξa1···ak(∇a1 · · · ∇ai · · · ∇aj · · · ∇ak −∇a1 · · · ∇aj · · · ∇ai · · · ∇ak) . (3.15)

But now, the 2nd term in the previous equation can be reduced to sum of commutators.
Since commutators reduce the order of derivatives by 2, the antisymmetric contribution can be
absorbed into lower order components. Therefore, the coefficients can be taken to be symmetric.
Next, suppose that ξa1···ak = ξ(a1···ak) has non-zero trace. Splitting into the trace and traceless
components,

ξa1···ak∇a1 · · · ∇akϕ

=

(
ξa1···ak∇a1 −

1

4
ηa1a2ξ ba3···ak

b

)
∇a1 · · · ∇akϕ+

1

4
ηa1a2ξ ba3···ak

b ∇a1 · · · ∇akϕ

=

(
ξa1···ak∇a1 −

1

4
ηa1a2ξ ba3···ak

b

)
∇a1 · · · ∇akϕ+

1

4
ξ ba3···ak
b �∇a3 · · · ∇akϕ

=

(
ξa1···ak∇a1 −

1

4
ηa1a2ξ ba3···ak

b

)
∇a1 · · · ∇akϕ+

1

4
ξ ba3···ak
b ∇a3 · · · ∇ak�ϕ

+
1

4
ξ ba3···ak
b [�,∇a3 · · · ∇ak ]ϕ

=

(
ξa1···ak∇a1 −

1

4
ηa1a2ξ ba3···ak

b

)
∇a1 · · · ∇akϕ+

1

24
ξ ba3···ak
b ∇a3 · · · ∇ak(Rϕ)

+
1

4
ξ ba3···ak
b [�,∇a3 · · · ∇ak ]ϕ , (3.16)
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which shows given ∆ϕ = 0, the trace component can be absorbed into terms with only k − 2
derivatives on ϕ.
Therefore any trace in the components can be removed by ∼. �

Hence, by the lemma, the most general nth order symmetry of ∆ is

D(n) =
n∑
k=0

ξa1···ak∇a1 · · · ∇ak (3.17)

with all ξa1···ak symmetric and traceless.

3.3 Top component for nth order symmetries

From here on, the two-component spinor formalism will be essential to the discussion. Again,
if required, refer to appendix D for an overview of spinors and appendix E for my spinor con-
ventions.

With the benefit of hindsight, I will begin with the following lemma.

Lemma 3.3. A tensor, ξa1···an, is symmetric and traceless if and only if the corresponding spin
tensor, ξα1···αnα̇1···α̇n, satisfies ξα1···αnα̇1···α̇n = ξ(α1···αn)(α̇1···α̇n).

Proof. The lemma is vacuously true for n = 1.
I will begin by proving symmetric and traceless =⇒ ξα1···αnα̇1···α̇n = ξ(α1···αn)(α̇1···α̇n). For n ≥ 2,
I will prove it by induction.
By definition, ξα1α2α̇1α̇2 = (σa1)α1α̇1(σa2)α2α̇2ξ

a1a2 . Any type−(2, 2) spin tensor2 can be “decom-
posed” as follows.

ξα1α2α̇1α̇2 = ξ[α1α2](α̇1α̇2) + ξ(α1α2)[α̇1α̇2] + ξ[α1α2][α̇1α̇2] + ξ(α1α2)(α̇1α̇2)

= −1

2
εα1α2ε

µνξµν(α̇1α̇2) −
1

2
εα̇1α̇2ε

µ̇ν̇ξ(α1α2)µ̇ν̇ +
1

4
εα1α2εα̇1α̇2ε

µνεµ̇ν̇ξµνµ̇ν̇

+ ξ(α1α2)(α̇1α̇2) (3.18)

where the 2nd line follows from the fact that every antisymmetric rank−2 tensor is proportional
to the Levi-Civita symbol with 2 indices; εµνξµν(α̇1α̇2), ε

µ̇ν̇ξ(α1α2)µ̇ν̇ and εµνεµ̇ν̇ξµνµ̇ν̇ are the
corresponding proportionality constants3. However,

εµνξµν(α̇1α̇2) =
1

2
εµν(ξµνα̇1α̇2 + ξµνα̇2α̇1)

= −1

2
ενµ(ξµνα̇1α̇2 + ξµνα̇2α̇1)

= −1

2
εµν(ξνµα̇1α̇2 + ξνµα̇2α̇1)

= −1

2
εµν(ξµνα̇2α̇1 + ξµνα̇1α̇2) by ξa1a2 ′s symmetry

= −εµνξµν(α̇1α̇2) , (3.19)

2When talking about spin tensors, I take type−(m,n) to mean there are m undotted and n dotted indices,
not that the tensor has m contravariant and n covariant indices.

3This can be explicitly checked using the identity, εαβε
µν = δναδ

µ
β − δµαδνβ , applied to equation 3.18.
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which means εµνξµν(α̇1α̇2) = 0. Similarly, εµ̇ν̇ξ(α1α2)µ̇ν̇ = 0 as well. For the third term,

εµνεµ̇ν̇ξµνµ̇ν̇ = ξ µµ̇
µµ̇

= −2ξ a
a

= 0 as ξa1a2 is traceless . (3.20)

And hence ultimately ξα1α2α̇1α̇2 = ξ(α1α2)(α̇1α̇2) as required.
Next, assume the statement holds for some n = k to show that implies the statement holds for
n = k + 1 as well.
By assumption, ξa1···ak+1

is symmetric and traceless.
Therefore, ξa1···ak+1

is symmetric and traceless in its first k indices alone.
Hence, by the inductive assumption, ξα1···αk+1α̇1···α̇k+1

= ξ(α1···αk)(α̇1···α̇k)αk+1α̇k+1
. Like with the

base case, I will re-write the last pair of indices in terms of symmetrisations and Levi-Civita
symbols.
Decompose ξα1···αk+1α̇1···α̇k+1

as

ξ(α1···αk)(α̇1···α̇k)αk+1α̇k+1
= Aα1···αkBα̇1···α̇kCαk+1

Dα̇k+1
(3.21)

for some Aα1···αk , Bα̇1···α̇k , Cαk+1
and Dα̇k+1

with Aα1···αk and Bα̇1···α̇k being symmetric in all their
indices4.

A(α1···αkCαk+1) =
1

(k + 1)!

(
k!Aα1···αkCαk+1

+ k!
k∑
i=1

Aα1···α̂i···αk+1
Cαi

)

=
1

k + 1

(
Aα1···αkCαk+1

+
k∑
i=1

Aα1···α̂i···αk+1
Cαi

)
(3.22)

To manipulate each of the terms in the sum,

εαk+1αiC
βAβα1···α̂i···αk = εαk+1αiε

βγCγAβα1···α̂i···αk

= (δγαk+1
δβαi − δ

β
αk+1

δγαi )CγAβα1···α̂i···αk

= Cαk+1
Aα1···αk − CαiAα1···α̂i···αk+1

. (3.23)

Therefore,

CαiAα1···α̂i···αk+1
= Cαk+1

Aα1···αk − εαk+1αiC
βAβα1···α̂i···αk (3.24)

Substituting this back into equation 3.22,

Aα1···αkCαk+1
= A(α1···αkCαk+1) +

1

k + 1

k∑
i=1

εαk+1αiC
βAβα1···α̂i···αk . (3.25)

Therefore,

Bα̇1···α̇kDα̇k+1
= B(α̇1···α̇kDα̇k+1) +

1

k + 1

k∑
i=1

εα̇k+1α̇iD
β̇Bβ̇α̇1··· ˆ̇αi···α̇k (3.26)

4Technically Aα1···αk
is a function of the index, αk+1, on Cαk+1

to get a true tensor product. This is
because in a tensor product, bases elements are products, e.g. e1 ⊗ · · · ⊗ ek ⊗ ek+1; the elements are not
just products of lower order tensors. However, Aα1···αk

Cαk+1
is a convenient notation to explicitly show the

separation/independence between the two sets of indices. The alternative would be something like ξα1···αk,αk+1
.
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as well. Putting both parts together,

ξ(α1···αk)(α̇1···α̇k)αk+1α̇k+1
=

(
A(α1···αkCαk+1) +

1

k + 1

k∑
i=1

εαk+1αiC
βAβα1···α̂i···αk

)

×
(
B(α̇1···α̇kDα̇k+1) +

1

k + 1

k∑
j=1

εα̇k+1α̇jD
β̇Bβ̇α̇1··· ˆ̇αj ···α̇k

)
. (3.27)

Re-arranging,

ξα1···αk+1α̇1···α̇k+1
= ξ(α1···αk+1)(α̇1···α̇k+1) +

1

k + 1

k∑
i=1

εα̇k+1α̇iξ
β̇

(α1···αk+1)α̇1··· ˆ̇αi···α̇kβ̇

+
1

k + 1

k∑
i=1

εαk+1αiξ
β

α1··· ˆ̇αi···αkβ (α̇1···α̇k+1)

+
1

(k + 1)2

k∑
i=1

k∑
j=1

εαk+1αiεα̇k+1α̇jξ
β β̇

α1··· ˆ̇αi···αkβ α̇1··· ˆ̇αi···α̇kβ̇
. (3.28)

It is now time to use the fact that ξa1···ak+1 is symmetric and traceless. From the tracelessness,

ξ β β̇

α1··· ˆ̇αi···αkβ α̇1··· ˆ̇αi···α̇kβ̇
= (σa)ββ̇(σ̃b)β̇βξ

α1··· ˆ̇αi···αkα̇1··· ˆ̇αi···α̇kab

= −2ηabξ
α1··· ˆ̇αi···αkα̇1··· ˆ̇αi···α̇kab

= −2ξ a
α1··· ˆ̇αi···αkα̇1··· ˆ̇αi···α̇ka

= 0 as ξa1···ak+1 is traceless. (3.29)

Next, from the symmetry, one can swap any pair of indices, (αi, α̇i), with any other pair,
(αj, α̇j). One can also freely swap indices within a symmetrisation. Thus,

εαk+1αiξ
β

α1··· ˆ̇αi···αkβ (α̇1···α̇k+1)
= εαiαk+1

ξ β

α1··· ˆ̇αi···αkβ (α̇1···α̇k+1···α̇i)

= −εαk+1αiξ
β

α1··· ˆ̇αi···αkβ (α̇1···α̇k+1)
, (3.30)

meaning εαk+1αiξ
β

α1··· ˆ̇αi···αkβ (α̇1···α̇k+1)
= 0.

Similarly, εα̇k+1α̇iξ
β̇

(α1···αk+1)α̇1··· ˆ̇αi···α̇kβ̇
= 0 as well.

Therefore, ξα1···αk+1α̇1···α̇k+1
= ξ(α1···αk+1)(α̇1···α̇k+1).

Hence, the induction is complete and symmetric and traceless =⇒ ξα1···αnα̇1···α̇n = ξ(α1···αn)(α̇1···α̇n),
or ξα1···αnα̇1···α̇n = ξ(α1···αn)(α̇1···α̇n) with indices raised, ∀n ∈ N.

It remains to show ξα1···αnα̇1···α̇n = ξ(α1···αn)(α̇1···α̇n) =⇒ symmetric and traceless for n ≥ 2.
Symmetry is automatic since that only requires that swapping pairs, (αi, α̇i) and (αj, α̇j),
leaves the tensor unchanged. However, here there is already symmetry in the dotted and and
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undotted indices independently, not just in pairs. For the trace,

ξaaa2···an = −1

2
ξαα̇αα̇a2···an

= −1

2
εαβεα̇β̇ξ

αβα̇β̇a2···an

= −1

2
εαβεα̇β̇ξ

βαα̇β̇a2···an

=
1

2
εβαεα̇β̇ξ

βαα̇β̇a2···an

=
1

2
εβαεβ̇α̇ξ

βαβ̇α̇a2···an

=
1

2
ξαα̇αα̇a2···an

= −ξaaa2···an , (3.31)

Therefore, ξaaa2···an = 0, thereby completing all parts of the proof. �

Corollary 3.3.1. Hence, by definition, a symmetric and traceless tensor, ξa1···an, is conformal
Killing if and only if

∇(β(β̇ξα1···αn)α̇1···α̇n) = 0 . (3.32)

Having established these preliminaries, I am ready to prove the main theorem of this sub-
chapter.

Theorem 3.4. For any higher symmetry, D(n), of ∆, the top component, ξa1···an, is conformal
Killing.

Proof. In vector notation,

D(n) =
n∑
k=0

ξa1···ak∇a1 · · · ∇ak . (3.33)

However, the same operator can be re-written in spinor notation as

D(n) =
n∑
k=0

ξα1···αkα̇1···α̇k∇α1α̇1 · · · ∇αkα̇k , (3.34)

where I have scaled each of the ξα1···αkα̇1···α̇k by (−2)k without loss of generality so that the
previous equation does not have any unnecessary numerical factors in it. Likewise, in spinor
notation, ∆ = � − 1

6
R = −1

2
(∇αα̇∇αα̇ + 1

3
R) and the leading factor of −1/2 may be ignored

as both ∆ϕ and ∆D(n)ϕ are being equated to zero. Then, ∆ϕ = 0 ⇐⇒ ∇αα̇∇αα̇ϕ = −1
3
Rϕ
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and since D(n) is a higher symmetry,

0 = ∆D(n)ϕ

=

(
∇αα̇∇αα̇ +

1

3
R

)( n∑
k=0

ξα1···αkα̇1···α̇k∇α1α̇1 · · · ∇αkα̇k

)
ϕ

=
n∑
k=0

ξα1···αkα̇1···α̇k∇αα̇∇αα̇∇α1α̇1 · · · ∇αkα̇kϕ+ 2
n∑
k=0

∇αα̇(ξα1···αkα̇1···α̇k)∇αα̇∇α1α̇1 · · · ∇αkα̇kϕ

+
n∑
k=0

∇αα̇∇αα̇(ξα1···αkα̇1···α̇k)∇α1α̇1 · · · ∇αkα̇kϕ+
n∑
k=0

1

3
Rξα1···αkα̇1···α̇k∇α1α̇1 · · · ∇αkα̇kϕ

=
n∑
k=0

ξα1···αkα̇1···α̇k [∇αα̇∇αα̇,∇α1α̇1 · · · ∇αkα̇k ]ϕ+ 2
n∑
k=0

∇αα̇(ξα1···αkα̇1···α̇k)∇αα̇∇α1α̇1 · · · ∇αkα̇kϕ

+
n∑
k=0

∇αα̇∇αα̇(ξα1···αkα̇1···α̇k)∇α1α̇1 · · · ∇αkα̇kϕ . (3.35)

Now, since a commutator reduces the number of derivatives by two (at the expense curvature
terms), the term in the previous equation with the highest number of derivatives on ϕ is
2∇αα̇(ξα1···αnα̇1···α̇n)∇αα̇∇α1α̇1 · · · ∇αnα̇nϕ. This term has n + 1 derivatives on ϕ and all other
terms in the sums have fewer than n+ 1 derivatives on ϕ.
Therefore, to get ∆D(n)ϕ = 0, either this term must vanish on its own or further manipulation
needs to be done to reduce the number of derivatives so that this term can cancel with some
of the lower order terms in the sums.
By lemmas 3.2 and 3.3, ξα1···αkα̇1···α̇n = ξ(α1···αk)(α̇1···α̇n).
Hence, in exactly the same way that equation 3.28 was derived,

∇αα̇(ξα1···αnα̇1···α̇n)∇αα̇∇α1α̇1 · · · ∇αnα̇n(ϕ)

=

(
∇(α(α̇ξα1···αn)α̇1···α̇n) +

1

n+ 1

n∑
i=1

εα̇α̇i∇(α

β̇
ξα1···αn)α̇1··· ˆ̇αi···α̇nβ̇

+
1

n+ 1

n∑
i=1

εααi∇ (α̇
β ξα1···α̂i···αnβα̇1···α̇n)

+
1

(n+ 1)2

n∑
i=1

n∑
j=1

εααiεα̇α̇j∇ββ̇ξ
α1···α̂i···αnβα̇1··· ˆ̇αj ···α̇nβ̇

)
∇αα̇∇α1α̇1 · · · ∇αnα̇n(ϕ) . (3.36)

I will try to reduce the number of derivatives on ϕ for each of the terms in the sum.

n∑
i=1

εα̇α̇i∇(α

β̇
ξα1···αn)α̇1··· ˆ̇αi···α̇nβ̇(∇αα̇∇α1α̇1 · · · ∇αnα̇nϕ)

=
n∑
i=1

εα̇α̇i∇(α

β̇
ξα1···αn)α̇1··· ˆ̇αi···α̇nβ̇(∇αα̇∇αiα̇i∇α1α̇1 · · · ∇αnα̇nϕ)

+
n∑
i=1

εα̇α̇i∇(α

β̇
ξα1···αn)α̇1··· ˆ̇αi···α̇nβ̇(∇αα̇[∇α1α̇1 · · · ∇αi−1α̇i−1

,∇αiα̇i ]∇αnα̇nϕ) (3.37)

The 2nd term/sum in the previous equation now only has n−1 derivatives on ϕ (at the cost of
some curvature terms) and hence need not be analysed further. As for the other terms, using
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the antisymmetry of ε and the freedom to re-order indices within a symmetrisation,
n∑
i=1

εα̇α̇i∇(α

β̇
ξα1···αn)α̇1··· ˆ̇αi···α̇nβ̇(∇αα̇∇αiα̇i∇α1α̇1 · · · ∇αnα̇nϕ)

= −
n∑
i=1

εα̇iα̇∇(α

β̇
ξα1···αn)α̇1··· ˆ̇αi···α̇nβ̇(∇αα̇∇αiα̇i∇α1α̇1 · · · ∇αnα̇nϕ)

= −
n∑
i=1

εα̇α̇i∇(α

β̇
ξα1···αn)α̇1··· ˆ̇αi···α̇nβ̇(∇αiα̇i∇αα̇∇α1α̇1 · · · ∇αnα̇nϕ)

= −
n∑
i=1

εα̇α̇i∇(α

β̇
ξα1···αn)α̇1··· ˆ̇αi···α̇nβ̇(∇αα̇∇αiα̇i∇α1α̇1 · · · ∇αnα̇nϕ

+ [∇αiα̇i ,∇αα̇]∇α1α̇1 · · · ∇αnα̇nϕ) . (3.38)

Therefore,
n∑
i=1

εα̇α̇i∇(α

β̇
ξα1···αn)α̇1··· ˆ̇αi···α̇nβ̇(∇αα̇∇αiα̇i∇α1α̇1 · · · ∇αnα̇nϕ)

= −1

2

n∑
i=1

εα̇α̇i∇(α

β̇
ξα1···αn)α̇1··· ˆ̇αi···α̇nβ̇([∇αiα̇i ,∇αα̇]∇α1α̇1 · · · ∇αnα̇nϕ) , (3.39)

which also has only n− 1 derivatives on ϕ. Similarly,
n∑
i=1

εααi∇ (α̇
β ξα1···α̂i···αnβα̇1···α̇n)(∇αα̇∇α1α̇1 · · · ∇αnα̇nϕ)

=
n∑
i=1

εααi∇ (α̇
β ξα1···α̂i···αnβα̇1···α̇n)(∇αα̇∇αiα̇i∇α1α̇1 · · · ∇αnα̇nϕ)

+
n∑
i=1

εααi∇ (α̇
β ξα1···α̂i···αnβα̇1···α̇n)(∇αα̇[∇α1α̇1 · · · ∇αi−1α̇i−1

,∇αiα̇i ]∇αnα̇nϕ) , (3.40)

where again the 2nd term/sum has has only n − 1 derivatives on ϕ and analogously with the
calculation above, the 1st term can be re-written as

n∑
i=1

εααi∇ (α̇
β ξα1···α̂i···αnβα̇1···α̇n)(∇αα̇∇αiα̇i∇α1α̇1 · · · ∇αnα̇nϕ)

= −1

2

n∑
i=1

εααi∇ (α̇
β ξα1···α̂i···αnβα̇1···α̇n)([∇αiα̇i ,∇αα̇]∇α1α̇1 · · · ∇αnα̇nϕ) , (3.41)

which likewise has n− 1 derivatives on ϕ.
The only remaining sum in equation 3.36 is

n∑
i=1

n∑
j=1

εααiεα̇α̇j∇ββ̇(ξα1···α̂i···αnβα̇1··· ˆ̇αj ···α̇nβ̇)∇αα̇∇α1α̇1 · · · ∇αnα̇n(ϕ) . (3.42)

When i = j in the previous sum,

εααiεα̇α̇i∇ββ̇(ξα1···α̂i···αnβα̇1··· ˆ̇αj ···α̇nβ̇)∇αα̇∇α1α̇1 · · · ∇αnα̇n(ϕ)

= ∇ββ̇(ξα1···α̂i···αnβα̇1··· ˆ̇αj ···α̇nβ̇)∇αα̇∇α1α̇1 · · · ∇αα̇ · · · ∇αnα̇n(ϕ)

= ∇ββ̇(ξα1···α̂i···αnβα̇1··· ˆ̇αj ···α̇nβ̇)∇α1α̇1 · · · ∇αnα̇n∇αα̇∇αα̇(ϕ) + commutators

= −1

3
∇ββ̇(ξα1···α̂i···αnβα̇1··· ˆ̇αj ···α̇nβ̇)∇α1α̇1 · · · ∇αnα̇n(Rϕ) + commutators , (3.43)
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and all the terms in the last line have n− 1 derivatives on ϕ. When i 6= j,

εααiεα̇α̇j∇ββ̇(ξα1···α̂i···αnβα̇1··· ˆ̇αj ···α̇nβ̇)∇αα̇∇α1α̇1 · · · ∇αnα̇n(ϕ)

= εααiεα̇α̇j∇ββ̇(ξα1···α̂i···αnβα̇1··· ˆ̇αj ···α̇nβ̇)∇αα̇∇αiα̇i∇α1α̇1 · · · ∇αnα̇n(ϕ) + commutators . (3.44)

Again, any term with commutators reduces the number of derivatives on ϕ, so can be ignored
as far as analysing terms with n+ 1 derivatives on ϕ. For the remaining term in the previous
line, a special case of equation 3.28 gives

εααiεα̇α̇j∇αα̇∇αiα̇i

= εααiεα̇α̇j
(
∇(α(α̇∇αi)α̇i) +

1

2
εααi∇

β
(α̇∇βα̇i) +

1

2
εα̇α̇i∇

β̇
(α ∇αi)β̇

+
1

4
εααiεα̇α̇i∇ββ̇∇ββ̇

)
. (3.45)

In the previous line εααi∇(α(α̇∇αi)α̇i) = 0 and εααi∇ β̇
(α ∇αi)β̇

= 0 because of the contraction

between α and αi (in ε there is antisymmetry in those indices where as in the ∇s those indices

are symmetrised). Also in the last term, I have created a ∇ββ̇∇ββ̇. This term can be pushed
to the front of the queue of derivatives via commutators. The commutators reduce the number
of derivatives by 2 and the remaining term also does the same by ∇ββ̇∇ββ̇ϕ = −Rϕ/3. Hence,
the only term left in the previous equation is

1

2
εααiεα̇α̇jεααi∇

β
(α̇∇βα̇i) = −εα̇α̇j∇β

(α̇∇βα̇i)

= −1

2
εα̇α̇j(∇β

α̇∇βα̇i +∇β
α̇i
∇βα̇)

=
1

2
(∇βα̇j∇βα̇i +∇β

α̇i
∇ α̇j
β )

=
1

2
(∇βα̇j∇βα̇i −∇βα̇i∇βα̇j)

=
1

2
[∇βα̇j ,∇βα̇i ] , (3.46)

which again reduces the number of derivatives on ϕ by 2.
Going back to equation 3.36, the only term remaining is

∇(α(α̇ξα1···αn)α̇1···α̇n)(∇αα̇∇α1α̇1 · · · ∇αnα̇nϕ) . (3.47)

The only way to reduce the number of derivatives on ϕ - like I already have for the other terms
- is to exploit the antisymmetry of ε to create a commutator or create a trace (with a pair of εs)
and generate a ∇αα̇∇αα̇ and use ∆ϕ = 0. However, neither of these techniques is applicable to
∇(α(α̇ξα1···αn)α̇1···α̇n)(∇αα̇∇α1α̇1 · · · ∇αnα̇nϕ) since ∇(α(α̇ξα1···αn)α̇1···α̇n) is symmetric and traceless
by lemma 3.3.
Therefore, ∇(α(α̇ξα1···αn)α̇1···α̇n)(∇αα̇∇α1α̇1 · · · ∇αnα̇nϕ) is the only term left in ∆D(n)ϕ with n+1
derivatives (the maximum) on ϕ.
Thus, ∆D(n)ϕ = 0 is only possible if ∇(α(α̇ξα1···αn)α̇1···α̇n) = 0.
Hence, ξa1···an is conformal Killing by corollary 3.3.1. �

This theorem was also given in [17], but by very different means. By construction, equation 3.9
describes a conformal field theory and its conformal invariance is predicated on ϕ→ eσϕ upon
a Weyl transformation, e m

a → eσe m
a . Hence, to have any physical significance, the symmetry

operator, D(n), must be such that D(n)ϕ → eσD(n)ϕ as well upon a Weyl transformation. As
I will show in the subsequent subchapters, this condition is sufficient to fix the possible forms
of lower order terms in terms of the top component, ξa1···an . But to do that, I have to know
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how ξa1···an transforms under a Weyl transformation. The required transformation is found by
noting that as I have a conformal field theory, theorem 3.4 must be preserved upon a Weyl
transformation. To that end, there is the following lemma.

Lemma 3.5. For ξa1···an to remain conformal Killing upon a Weyl transformation,
e′ ma = eσe m

a , ξa1···an must transform by ξ′a1···an = e−nσξa1···an.

Proof. I will prove the theorem in the infinitesimal case. The exponential map can be used
to lift the result to the finite case5 given in the lemma statement. Since ξa1···an is symmetric
and traceless, δξa1···an must also be symmetric and traceless to maintain the conformal Killing
condition.

∇′an+1ξ′a1···an = (∇an+1 + σ∇an+1 −∇b(σ)Man+1b)(ξa1···an + δξa1···an)

= (1 + σ)∇an+1ξa1···an +∇an+1δξa1···an

−
n∑
i=1

∇b(σ)(ηaian+1ξa1···α̂ib···an − ηaibξa1···α̂ian+1···an)

= (1 + σ)∇an+1ξa1···an +∇an+1δξa1···an

−
n∑
i=1

(∇b(σ)ηaian+1ξa1···α̂i···anb −∇ai(σ)ξa1···âi···an+1 (3.48)

It will be easiest to impose the conformal Killing condition in spinor notation as per corollary
3.3.1. When going to spinors,

(σai)αiα̇i(σan+1)αn+1 ˙αn+1η
aian+1 = (σai)αiα̇i(σan+1)αai ˙αn+1η

aian+1

= −2εαiαn+1εα̇iα̇n+1 . (3.49)

Plugging this into the expression for ∇′an+1ξ′a1···an above,

∇′αn+1α̇n+1
ξ′α1···αnα̇1···α̇n = (1 + σ)∇αn+1α̇n+1

ξα1···αnα̇1···α̇n +∇αn+1α̇n+1
δξα1···αnα̇1···α̇n

−
n∑
i=1

(∇ββ̇(σ)εαiαn+1εα̇iα̇n+1ξ
β β̇

α1···α̂i···αn α̇1··· ˆ̇αi···α̇n

−∇αiα̇i(σ)ξ
α1···α̂i···αn+1α̇1··· ˆ̇αi···α̇n+1

) . (3.50)

Corollary 3.3.1 gives ∇′(αn+1(α̇n+1
ξ′α1···αn)α̇1···α̇n) = 0. Since ξa1···an is itself conformal Killing,

∇(αn+1(α̇n+1
ξα1···αn)α̇1···α̇n) = 0 already. Any terms with a Levi-Civita symbol go to zero upon

symmetrisation. Finally, that leaves

0 = ∇(αn+1(α̇n+1
δξα1···αn)α̇1···α̇n) +

n∑
i=1

∇(αi(α̇i(σ)ξ
α1···α̂i···αn+1)α̇1··· ˆ̇αi···α̇n+1)

= ∇(αn+1(α̇n+1
δξα1···αn)α̇1···α̇n) + n∇(αn+1(α̇n+1

(σ)ξα1···αn)α̇1···α̇n)

= ∇(αn+1(α̇n+1
ζα1···αn)α̇1···α̇n) , (3.51)

where ζα1···αnα̇1···α̇n = δξα1···αnα̇1···α̇n + nσξα1···αnα̇1···α̇n . This last step is possible since

∇(αn+1(α̇n+1
ξα1···αn)α̇1···α̇n) = 0

=⇒ ∇(αn+1(α̇n+1
(σ)ξα1···αn)α̇1···α̇n) = ∇(αn+1(α̇n+1

(σξα1···αn)α̇1···α̇n)) . (3.52)

5This is essentially an application of the the Lie group - Lie algebra correspondence.
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Since δξα1···αnα̇1···α̇n shares all the symmetries of ξα1···αnα̇1···α̇n , the only way to get
∇(αn+1(α̇n+1

ζα1···αn)α̇1···α̇n) = 0 is to have ζα1···αnα̇1···α̇n = 0, or equivalently

δξα1···αnα̇1···α̇n = −nσξα1···αnα̇1···α̇n , (3.53)

which completes the proof. �

I have already found the most general form of the top component (conformal Killing) in theorem
3.4. Actually finding all (or indeed any) conformal Killing tensors, ξa1···an , for a given manifold
is beyond the scope of this thesis. However, given ξa1···an , finding the lower order components
can be achieved via a matter of informed guesswork.

Lemma 3.6. Given the top component, ξa1···an, of D(n), the lower order components are unique
up to the addition of lower order symmetries.

Proof. Let

D
(n)
1 =

n∑
k=0

ξa1···ak1 ∇a1 · · · ∇ak and D
(n)
2 =

n∑
k=0

ξa1···ak2 ∇a1 · · · ∇ak (3.54)

both be symmetries of ∆ such that ξa1···an1 = ξa1···an2 . Since D
(n)
1 and D

(n)
2 are both symmetries,

whenever ∆ϕ = 0, ∆D
(n)
1 ϕ = 0 and ∆D

(n)
2 ϕ = 0. Thus,

0 = ∆D
(n)
1 ϕ−∆D

(n)
2 ϕ

= ∆(D
(n)
1 −D

(n)
2 )ϕ

= ∆
n−1∑
k=0

(ξa1···ak1 ∇a1 · · · ∇ak − ξ
a1···ak
2 ∇a1 · · · ∇ak)ϕ (3.55)

Therefore, D
(n)
1 − D

(n)
2 is a symmetry of order n − 1. Hence, D

(n)
1 and D

(n)
2 differ by only a

lower order symmetry, hence proving the lemma. �

This lemma is perhaps not very insightful, but it is useful nonetheless because there is actually
a guide to guessing the lower order components in terms of the top component. Namely,
in the action - equation 3.9 - ϕ must transform as ϕ → eσϕ under a Weyl transformation,
e m
a → eσe m

a . As I will concretely demonstrate in the next two subchapters, this is sufficient
to find the possible forms of the lower order components.

3.4 1st order symmetries

From theorem 3.4,

D(1) = ξa∇a + ξ (3.56)

with ξa a conformal Killing vector. Next, to apply lemma 3.6, I have to first find all 0th order
symmetries, i.e. scalar fields, ξ, such that ∆ξϕ = 0 given ∆ϕ.

Lemma 3.7. The only 0th order symmetries of ∆ are constants.

Proof. ∆ξϕ = (�−R/6)(ξϕ) = ξ�ϕ+2∇a(ξ)∇a(ϕ)+ϕ�(ξ)−Rξϕ/6 = 2∇a(ξ)∇a(ϕ)+ϕ�(ξ).
Then, since ϕ and ∇a(ϕ) are linearly independent, ∇a(ξ) = 0 and hence �(ξ) = 0.
Finally, as ξ is a scalar, 0 = ∇aξ = e m

a ∂mξ =⇒ ξ is a constant. �

25



Hence, the ξ in equation 3.56 is unique up to a constant. I will find its possible form via the
requirement that D(1)ϕ→ eσD(1)ϕ upon a Weyl transformation.

Lemma 3.8. The only physically admissible6 1st order symmetry operator (up to the addition
of a constant) is

D(1) = ξa∇a +
1

4
∇a(ξ

a) , (3.57)

under the requirement that D′(1)ϕ′ = eσD(1)ϕ upon a Weyl transformation.

Proof. As before, one can equivalently work with the infinitesimal case, e′ ma = (1 + σ)e m
a .

Then, also recalling lemma 3.5,

D′(1)ϕ′ = (ξ′a∇′a + ξ′)(ϕ′)

= ((1− σ)ξa((1 + σ)∇a −∇b(σ)Mab) + ξ + δξ)(1 + σ)ϕ

= ξa∇aϕ− σξa∇aϕ+ ξaσ∇aϕ− 0 + ξϕ+ δξϕ+ ξa∇a(σϕ) + ξσϕ

= (1 + σ)D(1)ϕ+ (δξ + ξa∇a(σ))ϕ (3.58)

Therefore, to get the required transformation property, ξ should be constructed from ξa such
that δξ = −ξa∇a(σ). Physically, ξm functions as an infinitesimal generator of conformal
symmetries of gmn =⇒ my ansatz for ξ should be constructed from ξa without products of ξa.
This is what I mean by physically admissible. Hence, I need an object constructed from the
metric/vierbein alone with one local Lorentz index only, to contract with the index of ξa. The
only possible ansatz is thus ξ = A∇a(ξ

a) for some constant, A. Under a Weyl transformation,

A∇′a(ξ′a) = A((1 + σ)∇a −∇b(σ)Mab)((1− σ)ξa)

= A∇aξ
a + Aσ∇aξ

a − A∇b(σ)Mab(ξ
a)− A∇a(σξ

a) . (3.59)

Hence,

δ(A∇aξ
a) = Aσ∇aξ

a − A∇b(σ)Mab(ξ
a)− A∇a(σξ

a)

= Aσ∇aξ
a − A∇b(σ)(δaaξb − δabξa)− Aσ∇aξ

a − A∇a(σ)ξa

= −4Aξa∇a(σ) , (3.60)

which gives the desired result, δξ = −ξa∇a(σ) =⇒ A = 1/4. �

Thus, it must now be checked whether

D(1) = ξa∇a +
1

4
∇a(ξ

a) + ξ, (3.61)

where ξa is an arbitrary conformal Killing vector of the manifold and ξ is a constant, really is
a symmetry of ∆.

Theorem 3.9. D(1) = ξa∇a + 1
4
∇a(ξ

a) + ξ is always a symmetry of ∆.

Proof. In vector notation, ξa being conformal Killing is equivalent to ∇aξb +∇bξa = 1
2
ηab∇cξ

c

by setting the symmetric and traceless part to zero. The constant, ξ, is already a symmetry, so

6The meaning of physically admissible is given in the proof.
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only D(1) = ξa∇a + 1
4
∇aξ

a remains. Let ∆ϕ = 0 ⇐⇒ �(ϕ) = 1
6
Rϕ. Then, also remembering

that ∇a∇bϕ = ∇b∇aϕ,

∆D(1)ϕ = (�− 1

6
R)(ξa∇a +

1

4
∇a(ξ

a))ϕ

= �(ξa∇aϕ) +
1

4
�(∇a(ξ

a)ϕ)− 1

6
Rξa∇a(ϕ)− 1

24
R∇a(ξ

a)ϕ

= ξa�∇a(ϕ) + 2∇b(ξa)∇b∇a(ϕ) + �(ξa)∇a(ϕ) +
1

4
�∇a(ξ

a)ϕ

+
1

2
∇b∇a(ξ

a)∇b(ϕ) +
1

4
∇a(ξ

a)�(ϕ)− 1

6
Rξa∇a(ϕ)− 1

24
R∇a(ξ

a)ϕ

= ξa�∇a(ϕ) + 2∇b(ξa)∇b∇a(ϕ) + �(ξa)∇a(ϕ) +
1

4
�∇a(ξ

a)ϕ

+
1

2
∇b∇a(ξ

a)∇b(ϕ)− 1

6
Rξa∇a(ϕ) . (3.62)

�∇aϕ = ∇b∇b∇aϕ

= ∇b∇a∇bϕ

= ∇a�ϕ+ [∇b,∇a]∇bϕ

=
1

6
∇a(Rϕ) +Rb

cba∇cϕ

=
1

6
R∇aϕ+

1

6
ϕ∇aR +Rab∇bϕ (3.63)

Next, using the conformal Killing condition,

∇b(ξa)∇b∇a(ϕ) = −∇a(ξb)∇b∇a(ϕ) +
1

2
ηab∇c(ξ

c)∇b∇a(ϕ)

= −∇b(ξa)∇b∇a(ϕ) +
1

12
∇a(ξ

a)Rϕ . (3.64)

Therefore,

∇b(ξa)∇b∇a(ϕ) =
1

24
∇a(ξ

a)Rϕ (3.65)

Then, putting all these pieces together,

∆D(1)ϕ = {�(ξa) +
1

2
∇a∇b(ξ

b) +Rabξb}∇a(ϕ) +
1

12
{2ξa∇a(R) +∇a(ξ

a)R + 3�∇a(ξ
a)}ϕ
(3.66)

Let {1} and {0} denote the coefficients of ∇a(ϕ) and ϕ respectively. In {1},

∇a∇bξ
b = ∇b∇aξb + [∇a,∇b]ξ

b

= −∇b∇bξa +∇b

(
1

2
ηab∇cξ

c

)
+Rb a

c bξ
c

= −�ξa +
1

2
∇a∇bξ

b −Rabξb . (3.67)

Hence,

1

2
∇a∇bξ

b = −�ξa −Rabξb ⇐⇒ {1} = 0 . (3.68)
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Next, to simplify {0}, the previous equation yields

�∇aξ
a = ∇a∇a∇bξ

b

= −2∇a�ξ
a − 2∇a(R

abξb)

= −2�∇aξ
a − 2[∇a,�]ξa − 2∇a(R

abξb) , (3.69)

and thereby,

3�∇aξ
a = −2[∇a,�]ξa − 2∇a(R

abξb) . (3.70)

[∇a,�]ξa = ∇b[∇a,∇b]ξ
a + [∇a,∇b]∇bξa

= ∇b(Ra
cabξ

c) +Rb
cab∇cξa +Ra

cab∇bξc

= ∇a(R
abξb) (3.71)

Substituting that back,

3�∇aξ
a = −4∇a(R

abξb)

= −4∇a(R
ab)ξb − 4Rab∇a(ξb)

= −2ξa∇a(R)− 2Rab(∇a(ξb) +∇b(ξa))

= −2ξa∇a(R)−Rabηab∇cξ
c

= −2ξa∇a(R)−R∇aξ
a , (3.72)

which rearranges to {0} = 0.
Therefore, ∆D(1)ϕ = 0 ⇐⇒ D(1) is a symmetry of ∆. �

Corollary 3.9.1. D(1) = ξa∇a + 1
4
∇a(ξ

a) + ξ is the only 1st order symmetry of ∆.

Proof. Theorem 3.4, lemma 3.6 and lemma 3.7 together immediately lead to the corollary. �

3.5 2nd order symmetries

This time, from theorem 3.4,

D(2) = ξab∇a∇b + ξa∇a + ξ (3.73)

for a conformal Killing tensor, ξab.

Lemma 3.10. To get D′(2)ϕ′ = eσD(2)ϕ under a Weyl transformation, the only physically
admissible 2nd order symmetry (up to the addition of 1st order symmetries) is

D(2) = ξab∇a∇b +
2

3
∇b(ξ

ab)∇a +
1

15
∇a∇b(ξ

ab)− 3

10
Rabξ

ab . (3.74)

Proof. Again, I will form an ansatz for ξa and ξ by enforcing D′(2)ϕ′ = (1 + σ)D(2)ϕ upon an
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infinitesimal Weyl transformation, e′ ma = (1 + σ)e m
a . Hence, by lemma 3.5,

D′(2)ϕ′ = (ξ′ab∇′a∇′b + ξ′a∇′a + ξ′)ϕ′

= ((1− 2σ)ξab((1 + σ)∇a −∇c(σ)Mac)((1 + σ)∇b −∇d(σ)Mbd)

+ (ξa + δξa)((1 + σ)∇a −∇b(σ)Mab) + ξ + δξ)(1 + σ)ϕ

= ξab∇a∇bϕ− 2σξab∇a∇bϕ+ ξabσ∇a∇bϕ− ξab∇c(σ)Mac(∇bϕ) + ξab∇a(σ∇bϕ)

− ξab∇a(∇d(σ)Mbdϕ) + +ξab∇a∇b(σϕ) + ξa∇aϕ+ δξa∇aϕ+ ξaσ∇aϕ

− ξa∇a(∇b(σ)Mabϕ) + ξa∇a(σϕ) + ξϕ+ δξϕ+ ξσϕ

= (1 + σ)D(2)ϕ− ξab∇c(σ)(ηba∇cϕ− ηbc∇aϕ) + ξab∇a(σ)∇b(ϕ)

+ 2ξab∇a(σ)∇b(ϕ) + ξab∇a∇b(σ)ϕ+ δξa∇aϕ+ σξa∇aϕ+ ξa∇a(σ)ϕ+ δξϕ

= (1 + σ)D(2)ϕ+ (4ξab∇b(σ) + σξa + δξa)∇a(ϕ)

+ (ξab∇a∇b + ξa∇a(σ) + δξ)ϕ . (3.75)

Therefore,

δξa = −4ξab∇b(σ)− σξa and δξ = −ξab∇a∇b − ξa∇a(σ) (3.76)

to get the required transformation property. As with the 1st order symmetries, ξa and ξ should
be constructed from ξab without products of ξab. Hence, I need objects constructed from the
metric/vierbein alone with one and two local Lorentz indices respectively to contract with the
two indices of ξab to give ξa and ξ.
Hence, the most general ansatz is ξa = A∇b(ξ

ab) and ξ = B∇a(ξ
a) + CRabξ

ab.

ξ′a = A∇′bξ′ab

= A(∇b + σ∇b −∇c(σ)Mbc)(ξ
ab − 2σξab)

= (1− σ)A∇bξ
ab − 2Aξab∇b(σ)− A∇c(σ)Mbc(ξ

ab) (3.77)

Thus,

δξa = −σξa − 2Aξab∇b(σ)− A∇c(σ)(δabξ
b
c − δacξ b

b + δbbξ
a
c − δbcξab)

= −σξa − 2Aξab∇b(σ)− A∇b(σ)ξab + 0− 4A∇b(σ)ξab + A∇b(σ)ξab

= −σξa − 6Aξab∇b(σ) , (3.78)

which implies A = 2/3 to get the required δξa = −4ξab∇b(σ)− σξa.
Next, ξ′ = B∇′aξ′a + CR′abξ

′ab.

∇′aξ′a = (∇a + σ∇a −∇c(σ)Mac)(ξ
a − σξa − 4ξab∇b(σ))

= ∇aξ
a − ξa∇a(σ)− 4ξab∇a∇b(σ)− 4∇a(ξ

ab)∇b(σ)−∇c(σ)(δaaξc − δacξa)
= ∇aξ

a − 10ξa∇a(σ)− 4ξab∇a∇b(σ) (3.79)

R′abξ
′ab = (Rab + 2σRab + ηab�(σ) + 2∇a∇b(σ))(ξab − 2σξab)

= Rabξ
ab + ξaa�(σ) + 2ξab∇a∇b(σ)

= Rabξ
ab + 2ξab∇a∇b(σ) (3.80)

With these expressions,

ξ′ = B∇aξ
a − 10Bξa∇a(σ)− 4Bξab∇a∇b(σ) + CRabξ

ab + 2Cξab∇a∇b(σ) (3.81)
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and hence

δξ = −10Bξa∇a(σ) + (2C − 4B)ξab∇a∇b(σ) . (3.82)

Therefore, B = 1/10 and C = −3/10 to get the required δξ = −ξab∇a∇b−ξa∇a(σ). Combined
with the expression for ξa in terms of ξab, one finally gets

D(2) = ξab∇a∇b +
2

3
∇b(ξ

ab)∇a +
1

15
∇a∇b(ξ

ab)− 3

10
Rabξ

ab (3.83)

where ξab is an arbitrary conformal Killing tensor of the manifold, as the only possible physically
admissible symmetry of ∆ (modulo 1st order symmetries). �

Theorem 3.11. D(2) may not be a symmetry of ∆ on an arbitrary manifold. Instead, given
∆ϕ = 0,

∆D(2)ϕ =

(
4

15
Ca

bcd∇c(ξbd) +
4

5
∇d(Ca

bcd)ξbc
)
∇a(ϕ)

+

(
2

15
Cabcd∇a∇c(ξbd) +

2

5
∇c∇d(C

d
abc)ξ

ab +
4

15
∇d(C

d
abc)∇c(ξab)

)
ϕ . (3.84)

Proof. The proof is long and largely follows the same techniques as the 1st order case, so I’ve
presented the calculation in appendix B rather than present it here. �

Corollary 3.11.1. D(2) is a symmetry of ∆ on a conformally flat manifold.

Proof. A manifold is conformally flat if and only the Weyl tensor is zero. �

3.6 Remarks on nth order symmetries

Based on the discussion following theorem 2.10, I knew 1st order symmetries of ∆ would exist
on any manifold possessing a conformal Killing vector and indeed that was the result I found
in theorem 3.9. A truly “higher” symmetry would be one which could not written as a product
of 1st order symmetries. Since not every 2nd rank conformal Killing tensor can be written as
a product of two conformal Killing vectors, I have shown via theorem 3.11 that truly “higher”
symmetries of ∆ do exist on conformally flat spaces. However, I have not shown that is the
most general case; it is sufficient, but perhaps not necessary. See [20] for further discussion on
necessary conditions. Given that higher symmetries of ∆ do not exist even at 2nd order on
all manifolds possessing a conformal Killing tensor, I find it unlikely that higher symmetries
would exist on arbitrary manifolds for n > 2.

For any n, theorem 3.4 shows that ξa1···an is conformal Killing. From there, the next task
is to determine the lower order components. Key to my construction of those components was
enforcing that D′(n)ϕ′ = eσD(n)ϕ under a Weyl transformation; I was able to show D(1) and
D(2) were uniquely determined this way. A starting point on that path was lemma 3.5, but form
there my approach was somewhat ad hoc. Going to nth order - where I have not shown exis-
tence or uniqueness of D(n) - will require a more systematic approach. Luckily, options exist.
Using a variation of a formalism I will discuss in section 5, Eastwood7 [17] has generalised the
construction of the lower components in terms of Weyl transformation properties to all n and

7Eastwood’s approach is usually dubbed “tractor calculus.”
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claims “it is easily verified that [his] formulae” are correct and uniquely determined. Unfortu-
nately, it may be easy for him, but it is not for me and I do not understand his construction.
Using methods quite different to mine, Eastwood has shown his D(n) are higher symmetries of
∆ ∀n in flat space, but concludes “it is difficult to say whether they are symmetry operators”
in curved space - a question I have fully answered for n = 1 and partially answered for n = 2.

Another challenging extension - motivated by applications in higher spin field theory - to
the calculation I have considered is the computation of higher symmetries of supersymmetric
extensions of the d’Alembertian. There has been some success in this endeavour [21], but it is
well beyond the scope of my thesis.
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Chapter 4

Higher symmetries of the massless
Dirac operator

4.1 Action for the massless Dirac operator

The general Dirac equation is

(iγa∇a − qγaAa −m)Ψ = 0 (4.1)

where m is the particle’s mass and q is its charge1. In this thesis I will only be considering the
case of a massless particle in the absence of an external electromagnetic field.
Therefore, the Dirac equation reduces to iγa∇aΨ = 0 ⇐⇒ γa∇aΨ = 0.
As with the conformal d’Alembertian, the task in finding higher symmetries is to determine
scalar, linear, differential operators, D(n), such that γa∇aD

(n)Ψ = 0 for any four-component
spinor, Ψ, satisfying γa∇aΨ = 0.

Analogous to the last chapter, before hunting for higher symmetries, I will first derive γa∇aΨ =
0 as the equation of motion for a matter field and find the properties of the matter field required
to make the corresponding action Weyl invariant. Consider the action for a free, massless spinor
field used in curved space quantum field theory,

S[e m
a ,Ψ] = − i

2

∫
Ψγa∇a(Ψ)e d4x where e = det(e a

m ) . (4.2)

Under a variation to Ψ,

S ′ = − i

2

∫
(Ψ + δΨ)γa∇a(Ψ + δΨ)e d4x

= S − i

2

∫
(δΨγa∇a(Ψ) + Ψγa∇a(δΨ))e d4x . (4.3)

Hence,

δS = − i

2

∫
(δΨγa∇a(Ψ) + Ψγa∇a(δΨ))e d4x . (4.4)

1Strictly speaking, the zero on the RHS of the Dirac equation is a four-component spinor as well and thus
should be denoted 0. However, I will ignore such pedantry and just call it 0.
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To proceed, it is easiest to expand the matrix algebra contained within the action.

δΨγa∇a(Ψ) =
[
δχα δψα̇

] [ 0 (σa)αα̇
(σ̃a)α̇α 0

] [
∇aψα
∇aχ

α̇

]
=
[
δχα δψα̇

] [∇αα̇χ
α̇

∇αα̇ψα

]
= δχα∇αα̇χ

α̇ + δψα̇∇αα̇ψα (4.5)

Ψγa∇a(δΨ) =
[
χα ψα̇

] [ 0 (σa)αα̇
(σ̃a)α̇α 0

] [
∇aδψα
∇aδχ

α̇

]
=
[
χα ψα̇

] [∇αα̇δχ
α̇

∇αα̇δψα

]
= χα∇αα̇δχ

α̇ + ψα̇∇αα̇δψα

= ∇αα̇(χαδχα̇) +∇αα̇(ψα̇δψα)−∇αα̇(χα)δχα̇ −∇αα̇(ψα̇)δψα (4.6)

Thus, the variation is

δS = − i

2

∫
(∇αα̇(χαδχα̇) +∇αα̇(ψα̇δψα)−∇αα̇(χα)δχα̇ −∇αα̇(ψα̇)δψα

+ δχα∇αα̇χ
α̇ + δψα̇∇αα̇ψα)e d4x . (4.7)

The 1st two terms in the last equation integrate to zero by the generalised Stokes theorem
since the variations vanish at the boundary. Therefore,

δS = − i

2

∫
(δχα∇αα̇χ

α̇ + δψα̇∇αα̇ψα −∇αα̇(χα)δχα̇ −∇αα̇(ψα̇)δψα)e d4x . (4.8)

Since z and z∗ form a “basis” for C and ψα̇ = (ψα)∗ & χα = (χα̇)∗ by definition,
δS = 0 ⇐⇒ ∇αα̇χ

α̇ = 0, ∇αα̇ψα = 0, ∇αα̇χ
α = 0 and ∇αα̇ψα̇ = 0. The latter two equations

are complex conjugates of the former two, so really δS = 0 ⇐⇒ ∇αα̇χ
α̇ = 0 and ∇αα̇ψα = 0.

These two conditions can be summarised as γa∇aΨ = 0 since

γa∇aΨ =

[
0 (σa)αα̇

(σ̃a)α̇α 0

] [
∇aψα
∇aχ

α̇

]
=

[
∇αα̇χ

α̇

∇αα̇ψα

]
. (4.9)

Hence, the equation of motion for Ψ from S is the massless Dirac equation2.

Next, I have to find the Weyl transformation properties of S. Consider a Weyl transformation,
e′ ma = (1 + σ)e m

a for infinitesimal σ. Then, since e = 1/det(e m
a ),

e′ =
1

det((1 + σ)e m
a )

=
1

det(e m
a )det(I + σI)

=
e

1 + tr(σI)
=

e

1 + 4σ
= (1− 4σ)e . (4.10)

The Weyl transformed action is then

S ′ = − i

2

∫
(1− 4σ)(Ψ + δΨ)γa((1 + σ)∇a −∇b(σ)Mab)(Ψ + δΨ)e d4x

= S + 2i

∫
σΨγa∇a(Ψ)e d4x− i

2

∫
δΨγa∇a(Ψ)e d4x− i

2

∫
Ψγaσ∇a(Ψ)e d4x

+
i

2

∫
Ψγa∇b(σ)Mab(Ψ)e d4x− i

2

∫
Ψγa∇a(δΨ)e d4x . (4.11)

2Of course, this result is already used in quantum field theory.
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Therefore,

δS =
3i

2

∫
σΨγa∇a(Ψ)e d4x− i

2

∫
δΨγa∇a(Ψ)e d4x+

i

2

∫
Ψγa∇b(σ)Mab(Ψ)e d4x

− i

2

∫
Ψγa∇a(δΨ)e d4x . (4.12)

In the 3rd term on the RHS,

γaMab(Ψ) =

[
0 (σa)αα̇

(σ̃a)α̇α 0

] [
Mabψα
Mabχ

α̇

]
=

[
0 (σa)αα̇

(σ̃a)α̇α 0

][
(σab)

β
α ψβ

(σ̃ab)
α̇
β̇
χβ̇

]

=

[
(σa)αα̇(σ̃ab)

α̇
β̇
χβ̇

(σ̃a)α̇α(σab)
β
α ψβ

]

=
1

2

[
(δaa(σb)αβ̇ − δab(σa)αβ̇ − iεaabc(σ

c)αβ̇)χβ̇

(δaa(σ̃b)
α̇β − δab(σ̃a)α̇β + iεaabc(σ̃

c)α̇β)ψβ

]
=

3

2

[
(σb)αβ̇χ

β̇

(σ̃b)
α̇βψβ

]
=

3

2
γbΨ . (4.13)

Substituting this back into the last expression for δS,

δS =
3i

2

∫
σΨγa∇a(Ψ)e d4x− i

2

∫
δΨγa∇a(Ψ)e d4x+

3i

4

∫
∇a(σ)ΨγaΨe d4x

− i

2

∫
Ψγa∇a(δΨ)e d4x

= − i

2

∫ [
(δΨ− 3σΨ)γa∇a(Ψ) + Ψγa

(
∇a(δΨ)− 3

2
Ψ∇a(σ)

)]
e d4x . (4.14)

Let Φ = δΨ− 3
2
σΨ ⇐⇒ δΨ = 3

2
σΨ + Φ.

Therefore, ∇a(δΨ) = 3
2
σ∇aΨ + 3

2
∇a(σ)Ψ +∇a(Φ) and

δS = − i

2

∫ [(
3

2
σΨ + Φ− 3σΨ

)
γa∇a(Ψ)

+ Ψγa
(

3

2
σ∇aΨ +

3

2
∇a(σ)Ψ +∇a(Φ)− 3

2
Ψ∇a(σ)

)]
e d4x

= − i

2

∫
(Φγa∇aΨ + Ψγa∇aΦ)e d4x . (4.15)

Denote the components of Φ by Φ = (φα, ϕ
α̇)T. Then,

Ψγa∇aΦ = χα∇αα̇ϕ
α̇ + ψα̇∇αα̇φα

= ∇αα̇(χαϕα̇) +∇αα̇(ψα̇φα)−∇αα̇(χα)ϕα̇ −∇αα̇(ψα̇)φα . (4.16)

The 1st two terms on the RHS integrate to zero in the expression for δS by the generalised
Stokes’ theorem, provided spacetime does not have a boundary or the fields decay sufficiently
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rapidly at infinity. In either case,

δS = − i

2

∫
(ϕα∇αα̇(χα̇) + φα̇∇αα̇(ψα)−∇αα̇(χα)ϕα̇ −∇αα̇(ψα̇)φα)e d4x

= − i

2

∫
((∇αα̇(χα)ϕα̇)∗ + (∇αα̇(ψα̇)φα)∗ −∇αα̇(χα)ϕα̇ −∇αα̇(ψα̇)φα)e d4x . (4.17)

Again, since z and z∗ form a “basis” for C and ∇αα̇(χα) & ∇αα̇(ψα̇) are arbitrary,
δS = 0 ⇐⇒ φα = 0 & ϕα̇ = 0 ⇐⇒ Φ = 0 ⇐⇒ δΨ = 3

2
σΨ.

Therefore, for S to describe a conformal field theory, the matter field, Ψ, must transform as
Ψ′ = e3σ/2Ψ upon a Weyl transformation, e′ ma = eσe m

a .

4.2 Structure of the symmetry operators

Given Ψ is a spinor field, it will be more convenient to simply stick to spinor notation for the
remainder of this chapter. Because Ψ is not a scalar, but a four-component object, the most
general linear differential operator is actually a matrix of differential operators, e.g.

DΨ =

[
D β

(1)α D
(2)αβ̇

D α̇β
(3) D α̇

(4) β̇

] [
ψβ
χβ̇

]
. (4.18)

Then, although D is a scalar in the sense of definition 2.11, none of D β
(1)α , D

(2)αβ̇
, D α̇β

(3) or

D α̇
(4) β̇

is a scalar in the same sense. Variants of this “matrix of differential operators” approach

are undertaken in [18, 22, 19, 20] and require “conformal Killing-Yano tensors” - an extension
to the concept I have already introduced. However, I will focus on the restricted case where
the higher symmetry acts the same way on all of Ψ’s components, i.e.

DΨ =


Dψ1

Dψ2

Dχ1̇

Dχ2̇

 . (4.19)

Like in section 3.2, the next task is to find the most general form of D from products and
contractions of ∇αα̇, Mαβ, Mαβ and ξα1···αkα̇1···α̇k while taking into account the equivalence
relation, 2.13. By the same logic as applied in equation 3.12, any Lorentz generator can be
“pushed to the front,” e.g. any Mβγ∇αα̇ like terms can be replaced with terms like ∇αα̇Mβγ.

Lemma 4.1. Any terms in the symmetry operator with more than two Lorentz generators can
be removed by the equivalence relation, ∼.

Proof. First notice that whenever there are both dotted and undotted Lorentz generators, they
annihilate Ψ since Mαβχ

α̇ = 0, M α̇β̇ψα = 0 and [Mαβ,M α̇β̇] = 0. Therefore, only terms of

the form MαβMµν or M α̇β̇M µ̇ν̇ need to be considered3. With D being a “scalar” of the form
in equation 4.19, the Lorentz generators must appear with appropriate coefficients, i.e. as
ξαβµνMαβMµν with ξαβµν = ξ(αβ)(µν) and ξα̇β̇µ̇ν̇M α̇β̇M µ̇ν̇ with ξα̇β̇µ̇ν̇ = ξ(α̇β̇)(µ̇ν̇) respectively.
Consider the decomposition of these coefficients. Applying equation 3.25 repeatedly, if

3If two Lorentz generators can be reduced to one or fewer, then by induction a term with n Lorentz generators
can also be reduced to terms with one Lorentz generator or fewer.
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Aαβ = A(αβ), then

AβγCµDν = A(βγCµ)Dν +
1

3
(εµβAργC

ρ + εµγAρβC
ρ)Dν

= A(βγCµDν) +
1

4
(ενβA(ργCµ)D

ρ + ενγA(βρCµ)D
ρ + ενµA(βγCρ)D

ρ)

+
1

3
(εµβA(ργDν)C

ρ + εµγA(ρβDν)C
ρ) +

1

9
(εµβενρAλγC

ρDλ + εµβενγAρλC
ρDλ

+ εµγενρAλβC
ρDλ + εµγενβAρλC

ρDλ)

= A(βγCµDν) +
1

4
(ενβA(ργCµ)D

ρ + ενγA(βρCµ)D
ρ + ενµA(βγCρ)D

ρ)

+
1

3
(εµβA(ργDν)C

ρ + εµγA(ρβDν)C
ρ) +

1

9
(εµβAργCνD

ρ + εµβενγAρλC
ρDλ

+ εµγAρβCνD
ρ + εµγενβAρλC

ρDλ) . (4.20)

Therefore,

ξβγµν = ξ(βγµν) +
1

4
(ενβξ

ρ
(ργµ) + ενγξ

ρ
(βρµ) + ενµξ

ρ
(βγρ) ) +

1

3
(εµβξ

ρ
(ργ ν) + εµγξ

ρ
(ρβ ν))

+
1

9
(εµβξ

ρ
ργν + εµβενγξ

ρλ
ρλ + εµγξ

ρ
ρβν + εµγενβξ

ρλ
ρλ ) . (4.21)

Since ξαβµν = ξαβνµ, the previous expression can be simplified to

ξβγµν = ξ(βγµν) +
7

24
(εµβξ

ρ
(ργν) + εµγξ

ρ
(ρβν) + ενβξ

ρ
(ργµ) + ενγξ

ρ
(ρβµ) ) +

1

9
(εµβενγ + ενβεµγ)ξ

ρλ
ρλ

+
1

18
(εµβξ

ρ
ργν + ενβξ

ρ
ργµ + εµγξ

ρ
ρβν + ενγξ

ρ
ρβµ ) . (4.22)

Meanwhile,

MβγMµνψα =
1

2
Mβγ(−δµαψν − δναψµ)

= −1

2
δµαM

βγψν − 1

2
δναM

βγψµ

=
1

4
(δµαε

νβψγ + δµαε
νγψβ + δναε

µβψγ + δναε
µγψβ, . (4.23)

Putting the different pieces together,

ξβγµνMβγMµνψα

= ξβγµνM
βγMµνψα

=
1

4

(
ξ(βγµν) +

7

24
(εµβξ

ρ
(ργν) + εµγξ

ρ
(ρβν) + ενβξ

ρ
(ργµ) + ενγξ

ρ
(ρβµ) ) +

1

9
(εµβενγ + ενβεµγ)ξ

ρλ
ρλ

+
1

18
(εµβξ

ρ
ργν + ενβξ

ρ
ργµ + εµγξ

ρ
ρβν + ενγξ

ρ
ρβµ )

)
× (δµαε

νβψγ + δµαε
νγψβ + δναε

µβψγ + δναε
µγψβ) . (4.24)

This last expression actually simplifies a lot because

ξ(βγµν)(δ
µ
αε

νβψγ + δµαε
νγψβ + δναε

µβψγ + δναε
µγψβ) = 0

εµβξ
ρ

(ργν) (δµαε
νβψγ + δµαε

νγψβ + δναε
µβψγ + δναε

µγψβ)

= −ξ ρ
(ργα) ψ

γ + 0− 2ξ ρ
(ργα) ψ

γ − ξ ρ
(ργα) ψ

γ

= −4ξ γ
(γβα) ψ

β . (4.25)
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Likewise, εµγξ
ρ

(ρβν) , ενβξ
ρ

(ργµ) and ενγξ
ρ

(ρβµ) multiplied with (δµαε
νβψγ+δµαε

νγψβ+δναε
µβψγ+

δναε
µγψβ) all equal −4ξ γ

(γβα) ψ
β as well because the former three are the same as εµβξ

ρ
(ργν) but

with a µ and ν swapped or β and γ swapped while the last factor is symmetric under µ & ν
and β & γ swaps.

εµβενγξ
ρλ

ρλ (δµαε
νβψγ + δµαε

νγψβ + δναε
µβψγ + δναε

µγψβ)

= ξ ρλ
ρλ (−ψα − 2ψα − 2ψα − ψα)

= −6ξβγβγψα (4.26)

Therefore ενβεµγξ
ρλ

ρλ (δµαε
νβψγ + δµαε

νγψβ + δναε
µβψγ + δναε

µγψβ) = −6ξβγβγψα too.

εµβξ
ρ

ργν (δµαε
νβψγ + δµαε

νγψβ + δναε
µβψγ + δναε

µγψβ)

= −ξ ρ
ργα ψ

γ − ξβγβγψα − 2ξ ρ
ργα ψ

γ − ξ ρ
ργα ψ

γ

= −4ξ γ
γβα ψβ − ξβγβγψα (4.27)

Similarly, ενβξ
ρ

ργµ , εµγξ
ρ

ρβν and ενγξ
ρ

ρβµ contracted with (δµαε
νβψγ + δµαε

νγψβ + δναε
µβψγ +

δναε
µγψβ) also give the same result as the last line for the reason outlined above. Anyhow,

putting all the parts together,

ξβγµνMβγMµνψα = −7

6
ξ γ
(γβα) ψ

β − 1

3
ξβγβγψα −

2

9
ξ γ
γβα ψβ − 1

18
ξβγβγψα

= −7

6
ξ γ
(γβα) ψ

β − 2

9
ξ γ
γβα ψβ − 7

18
ξβγβγψα . (4.28)

However, ξ γ
γβα ψβ = ξ γ

γ(βα) ψ
β + ξ γ

γ[βα] ψ
β = ξ γ

γ(βα) ψ
β + 1

2
ξεαβξ

ργ
γρ ψβ = ξ γ

γ(βα) ψ
β + 1

2
ξβγβγψα.

Thus,

ξβγµνMβγMµνψα = −7

6
ξ γ
(γβα) ψ

β − 2

9
ξ γ
γ(βα) ψ

β − 1

2
ξβγβγψα

= ζαβψ
β + ζψα (4.29)

for some some symmetric tensor, ζab, and a scalar, ζ. The ζψα term has no Lorentz generators;
it is simply a 0th order differential operator (i.e. a scalar) acting on ψα. The ζαβψ

β term can
be absorbed into a term4 with one Lorentz generator since

ξβγMβγ =
1

2
ξβγ(εαβψγ + εαγψβ) = ξ β

α ψβ = −ξαβψβ . (4.30)

Hence, ξβγµνMβγMµν is related by ∼ to an operator with one or fewer Lorentz generators in
each term. Likewise,

ξβ̇γ̇µ̇ν̇M β̇γ̇M µ̇ν̇χ
α̇ = ζ α̇β̇χβ̇ + ζχα̇ (4.31)

for some ζ α̇β̇ and ζ as the algebra is the same, just with dots and the free index in an upstairs
position. �

Lemma 4.2. Any terms in the symmetry operator with a contraction between a covariant
derivative and a Lorentz generator can be removed by ∼.

4Absorbing into lower order terms implies the two differential operators are related by ∼.
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Proof. To prove this lemma it will be necessary to use the Dirac equation, equation 4.9, which
says γa∇aΨ = 0 ⇐⇒ ∇αα̇χ

α̇ = 0 and ∇αα̇ψα = 0. This is fine since applying the Dirac
equation to simplify a symmetry operator keeps one in the same equivalence class.
Given the previous lemma, there are two possible contractions, ξβα̇∇γ

α̇Mβγ and ξαβ̇∇ γ̇
α M β̇γ̇.

ξβα̇∇γ
α̇Mβγψα =

1

2
ξβα̇∇γ

α̇(εαβψγ + εαγψβ)

=
1

2
ξ α̇
α ∇

γ
α̇ψγ +

1

2
ξβα̇∇αα̇ψβ

= 0 +
1

2
ξβα̇∇αα̇ψβ (4.32)

However, ∇αα̇ψβ = ∇(αα̇ψβ) +∇[αα̇ψβ]

= ∇(αα̇ψβ) +
1

2
εαβ∇γ

α̇ψγ

= ∇(αα̇ψβ) + 0 (4.33)

=⇒ ∇αα̇ψβ = ∇βα̇ψα (4.34)

Therefore,

ξβα̇∇γ
α̇Mβγψα =

1

2
ξββ̇∇ββ̇ψα (4.35)

and thus a ∇γ
α̇Mβγ term is equivalent to a single derivative, ∇ββ̇. Similarly,

ξαβ̇∇ γ̇
α M β̇γ̇χ

α̇ =
1

2
ξαβ̇∇ γ̇

α (δα̇
β̇
χγ̇ + δα̇γ̇χβ̇)

=
1

2
ξαα̇∇ γ̇

α χγ̇ +
1

2
ξαβ̇∇ α̇

α χβ̇

= 0− 1

2
ξα
β̇
∇ α̇
α χβ̇ (4.36)

Again, ∇ α̇
α χβ̇ = ∇ (α̇

α χβ̇) +∇ [α̇
α χβ̇] = ∇ (α̇

α χβ̇) + 1
2
εα̇β̇∇αγ̇χ

γ̇ = ∇ (α̇
α χβ̇). Hence,

ξαβ̇∇ γ̇
α M β̇γ̇χ

α̇ = −1

2
ξα
β̇
∇ β̇
α χα̇ =

1

2
ξββ̇∇ββ̇χ

α̇ (4.37)

and thus ∇ γ̇
α M β̇γ̇ is also equivalent to ∇ββ̇. �

Corollary 4.2.1. The coefficient of any term with both a derivative and a Lorentz generator
can be fully symmetrised in the indices common to the derivative and Lorentz generator.

Proof. A term with both a derivative and a Lorentz generator can be represented as
ξαβγα̇∇αα̇Mβγ or ξαα̇β̇γ̇∇αα̇M β̇γ̇ respectively5. ξαβγα̇ = ξα(βγ)α̇ and ξαα̇β̇γ̇ = ξαα̇(β̇γ̇) already since

Mβγ = Mγβ and M β̇γ̇ = M γ̇β̇. Then, by equation 3.25,

ξαβγα̇∇αα̇Mβγ = ξ(αβγ)α̇∇αα̇Mβγ +
1

3
εαβξ µγα̇

µ ∇αα̇Mβγ +
1

3
εαγξ βµα̇

µ ∇αα̇Mβγ

= ξ(αβγ)α̇∇αα̇Mβγ −
2

3
ξ µγα̇
µ ∇β

α̇Mβγ , (4.38)

5The overall operator/term may be of a higher order, but I am only interested here in the interaction of a
Lorentz generator with any one derivative and hence the coefficient can be restricted to only the one Lorentz
generator and one derivative case.
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where the 2nd term in the previous line is equivalent to a term with a single derivative by the
lemma. Likewise,

ξαα̇β̇γ̇∇αα̇M β̇γ̇ = ξα(α̇β̇γ̇)∇αα̇M β̇γ̇ +
1

3
εα̇β̇ξα µ̇γ̇

µ̇ ∇αα̇M β̇γ̇ +
1

3
εα̇γ̇ξα β̇µ̇

µ̇ ∇αα̇M β̇γ̇

= ξα(α̇β̇γ̇)∇αα̇M β̇γ̇ −
2

3
ξα β̇µ̇
µ̇ ∇ γ̇

α M β̇γ̇ , (4.39)

where again the 2nd term can be simplified by the lemma.
In either case, only the fully symmetrised form of the coefficient, ξ(αβγ)α̇ and ξα(α̇β̇γ̇) respectively,
is left acting on ∇αα̇Mβγ or ∇αα̇M β̇γ̇ respectively. �

Lemma 4.3. For terms with only derivatives, the coefficient can be taken to be symmetric and
traceless.

Proof. Since γa∇aΨ = 0,

0 = γb∇bγ
a∇aΨ

=
1

2
(γbγa + γaγb)∇b∇aΨ +

1

2
(γbγa − γaγb)∇b∇aΨ

= −ηba∇b∇aΨ +
1

2
γaγb[∇a,∇b]Ψ

= −�Ψ +
1

4
γaγbR cd

ab McdΨ . (4.40)

Therefore,

�Ψ =
1

4

[
0 (σa)αα̇

(σ̃a)α̇α 0

] [
0 (σb)αβ̇

(σ̃b)α̇β 0

]
R cd
ab McdΨ

=
1

4

[
(σa)αα̇(σ̃b)α̇βR cd

ab Mcd 0
0 (σ̃a)α̇α(σb)αβ̇R

cd
ab Mcd

]
Ψ

=
1

4

[
R βα̇cd
αα̇ Mcdψβ

Rαα̇ cd
αβ̇

Mcdχ
β̇

]
(4.41)

1

4
R βα̇cd
αα̇ Mcdψβ =

1

2
(R βα̇µν

αα̇ Mµνψβ +R βα̇µ̇ν̇
αα̇ M µ̇ν̇ψβ)

=
1

2
R βα̇µ
αα̇ βψµ

=
1

2
(−δα̇α̇C βµν

α − δβαE
µ α̇
βα̇ − δ

α̇
α̇(−δµαδ

β
β + εµβεαβ)F )ψµ

= 3Fψα

=
1

4
Rψα (4.42)

1

4
Rαα̇ cd

αβ̇
Mcdχ

β̇ =
1

2
(Rαα̇ µν

αβ̇
Mµνχ

β̇ +Rαα̇ µ̇ν̇

αβ̇
M µ̇ν̇χ

β̇)

=
1

2
Rαα̇ β̇µ̇

αβ̇
χµ̇

= (δααC
α̇ β̇µ̇

β̇
+ δα̇

β̇
Eα β̇µ̇

α + δαα(−εβ̇α̇δµ̇
β̇
− δβ̇

β̇
εµ̇α̇)F )χµ̇

= 3Fχα̇

=
1

4
Rχα̇ , (4.43)
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which finally gives

�Ψ =
1

4
RΨ . (4.44)

Hence, every component of Ψ satisfies an equation identical to the conformal d’Alembertian
except for a change of 1

6
→ 1

4
. This change occurs because (�− 1

6
R)ϕ = 0 transforms covariantly

under Weyl transformations given ϕ′ = eσϕ; Ψ instead transforms as Ψ′ = e3σ/2Ψ and for that
(�− 1

4
R)Ψ = 0 is the covariant equation. In any case, the present lemma then follows directly

from lemma 3.2 because the 1
6
→ 1

4
change is inconsequential in the proof of lemma 3.2. �

Hence, given lemma 3.3 and the results & comments in this section, it follows that the most
general nth order symmetry operator I will need to consider is

D(n) =
n∑
k=0

ξα1···αkα̇1···α̇k∇α1α̇1 · · · ∇αkα̇k +
n−1∑
k=0

ξα1···αkβγα̇1···α̇k∇α1α̇1 · · · ∇αkα̇kMβγ

+
n−1∑
k=0

ξα1···αkα̇1···α̇kβ̇γ̇∇α1α̇1 · · · ∇αkα̇kM β̇γ̇ (4.45)

where ξα1···αkα̇1···α̇k = ξ(α1···αk)(α̇1···α̇k), ξα1···αkβγα̇1···α̇k = ξ(α1···αkβγ)(α̇1···α̇k)

and ξα1···αkα̇1···α̇kβ̇γ̇ = ξ(α1···αk)(α̇1···α̇kβ̇γ̇).
For example, in the n = 1, 2 cases, the symmetry operators are

D(1) = ξαα̇∇αα̇ + ξαβMαβ + ξα̇β̇M α̇β̇ + ξ (4.46)

where ξαβ = ξ(αβ) & ξα̇β̇ = ξ(α̇β̇) and

D(2) = ξαβα̇β̇∇αα̇∇ββ̇ + ξαβγα̇∇αα̇Mβγ + ξαα̇β̇γ̇∇αα̇M β̇γ̇ + ξαα̇∇αα̇ + ξαβMαβ + ξα̇β̇M α̇β̇ + ξ

(4.47)

where ξαβα̇β̇ = ξ(αβ)(α̇β̇), ξαβγα̇ = ξ(αβγ)α̇, ξαα̇β̇γ̇ = ξα(α̇β̇γ̇), ξαβ = ξ(αβ) and ξα̇β̇ = ξ(α̇β̇).

4.3 1st order symmetries

Lemma 4.4. In D(1), ξαα̇ must be conformal Killing, ξαβ = 1
2
∇(α

α̇ξ
β)α̇ and ξα̇β̇ = 1

2
∇ (α̇
α ξαβ̇).

Proof. First, let Ψ satisfy γa∇aΨ = 0. That is,

0 =

[
0 (σa)αα̇

(σ̃a)α̇α 0

] [
∇aψα
∇aχ

α̇

]
=

[
∇αα̇χ

α̇

∇αα̇ψα

]
. (4.48)
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In components, ∇αα̇χ
α̇ = 0 and ∇αα̇ψα = 0. Then, applying the candidate symmetry operator,

γa∇aD
(1)Ψ

=

[
0 (σa)αα̇

(σ̃a)α̇α 0

]
∇a

(
(ξββ̇∇ββ̇ + ξβγMβγ + ξβ̇γ̇M β̇γ̇ + ξ)

[
ψα
χα̇

])
=

[
∇αα̇((ξββ̇∇ββ̇ + ξβγMβγ + ξβ̇γ̇M β̇γ̇ + ξ)χα̇)

∇αα̇((ξββ̇∇ββ̇ + ξβγMβγ + ξβ̇γ̇M β̇γ̇ + ξ)ψα)

]

=

[
∇αα̇((ξββ̇∇ββ̇ + ξβ̇γ̇M β̇γ̇ + ξ)χα̇)

∇αα̇((ξββ̇∇ββ̇ + ξβγMβγ + ξ)ψα)

]

=

[
∇αα̇(ξββ̇∇ββ̇χ

α̇ + 1
2
ξβ̇γ̇(δα̇

β̇
χγ̇ + δα̇γ̇χβ̇) + ξχα̇)

∇αα̇(ξββ̇∇ββ̇ψα + 1
2
ξβγ(εαβψγ + εαγψβ) + ξψα)

]

=

[
∇αα̇(ξββ̇∇ββ̇χ

α̇ + ξα̇β̇χβ̇ + ξχα̇)

∇αα̇(ξββ̇∇ββ̇ψα + ξ β
α ψβ + ξψα)

]

=

[
∇αα̇(ξββ̇)∇ββ̇χ

α̇ + ξββ̇∇αα̇∇ββ̇χ
α̇ +∇αα̇(ξα̇β̇)χβ̇ + ξα̇β̇∇αα̇(χβ̇) +∇αα̇(ξ)χα̇

∇αα̇(ξββ̇)∇ββ̇ψα + ξββ̇∇αα̇∇ββ̇ψα +∇αα̇(ξ β
α )ψβ + ξ β

α ∇αα̇ψβ +∇αα̇(ξ)ψα

]
, (4.49)

where I have used ∇αα̇χ
α̇ = 0, ∇αα̇ψα = 0, Mβγχ

α̇ = 0 and M β̇γ̇ψα = 0. In the expression
above,

ξββ̇∇αα̇∇ββ̇χ
α̇ = ξββ̇∇ββ̇∇αα̇χ

α̇ + ξββ̇[∇αα̇,∇ββ̇]χα̇

= 0 + ξββ̇(R µν

αα̇ββ̇
Mµνχ

α̇ +R µ̇ν̇

αα̇ββ̇
M µ̇ν̇χ

α̇)

= ξββ̇R α̇γ̇

αα̇ββ̇
χγ̇

= ξββ̇(εαβC
α̇γ̇

α̇β̇
+ εα̇β̇E

α̇γ̇
αβ + εαβ(δα̇α̇δ

γ̇

β̇
+ δγ̇α̇δ

α̇
β̇
)F )χγ̇

= ξββ̇Eαβα̇β̇χ
α̇ − 3Fξαα̇χ

α̇ . (4.50)

ξββ̇∇αα̇∇ββ̇ψα = ξββ̇∇ββ̇∇
αα̇ψα + ξββ̇[∇αα̇,∇ββ̇]ψα

= 0 + ξββ̇(Rαα̇ µν

ββ̇
Mµνψα +Rαα̇ µ̇ν̇

ββ̇
M µ̇ν̇ψα)

= ξββ̇Rαα̇ γ

ββ̇α
ψγ

= ξββ̇(δα̇
β̇
Cα γ

βα + δαβE
γα̇

α β̇
+ δα̇

β̇
(−δααδ

γ
β + εγαεβα)F )ψγ

= ξββ̇E
αβα̇β̇ψα − 3Fξαα̇ψα (4.51)

Further simplifications can be made in equation 4.49 using equation 3.28.

∇αα̇(ξββ̇)∇ββ̇ψα

=

(
∇(α(α̇(ξβ)β̇)) +

1

2
εαβ∇ (α̇

γ ξγβ̇) +
1

2
εα̇β̇∇(α

γ̇ξ
β)γ̇ +

1

4
εαβεα̇β̇∇γγ̇ξ

γγ̇

)
∇ββ̇ψα

= ∇(α(α̇(ξβ)β̇))∇ββ̇ψα +
1

2
∇(α

γ̇ξ
β)γ̇∇ α̇

β ψα (4.52)
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as εαβ∇ββ̇ψα = ∇α
β̇
ψα = 0. Similarly,

∇αα̇(ξββ̇)∇ββ̇χ
α̇

= ∇αα̇(ξββ̇)∇ββ̇χα̇

=

(
∇(α(α̇(ξβ)β̇)) +

1

2
εαβ∇γ

(α̇ξγβ̇) +
1

2
εα̇β̇∇

γ̇
(α ξβ)γ̇ +

1

4
εαβεα̇β̇∇γγ̇ξ

γγ̇

)
∇ββ̇χα̇

= ∇(α(α̇(ξβ)β̇))∇
ββ̇χα̇ +

1

2
∇γ

(α̇ξγβ̇)∇
β̇
α χα̇ . (4.53)

Plugging all this back into equation 4.49,

γa∇aD
(1)Ψ =

[
∇(α(α̇(ξβ)β̇))∇

ββ̇χα̇ +
1

2
∇γ

(α̇ξγβ̇)∇
β̇
α χα̇ + ξββ̇Eαβα̇β̇χ

α̇ − 3Fξαα̇χ
α̇

+∇αα̇(ξα̇β̇)χβ̇ + ξα̇β̇∇αα̇(χβ̇) +∇αα̇(ξ)χα̇,

∇(α(α̇(ξβ)β̇))∇ββ̇ψα +
1

2
∇(α

γ̇ξ
β)γ̇∇ α̇

β ψα + ξββ̇E
αβα̇β̇ψα − 3Fξαα̇ψα

+∇αα̇(ξ β
α )ψβ + ξ β

α ∇αα̇ψβ +∇αα̇(ξ)ψα

]T
=

[(
∇(α(α̇(ξβ)β̇)) + εαβ

(
1

2
∇γ

(α̇ξγβ̇) + ξα̇β̇

))
∇ββ̇χα̇

+ (∇αα̇(ξ) +∇ β̇
α (ξα̇β̇) + ξββ̇Eαβα̇β̇ − 3Fξαα̇)χα̇,(

∇(α(α̇(ξβ)β̇)) + εα̇β̇
(

1

2
∇(α

γ̇ξ
β)γ̇ − ξαβ

))
∇ββ̇ψα

+ (∇αα̇(ξ)−∇ α̇
β (ξαβ) + ξββ̇E

αβα̇β̇ − 3Fξαα̇)ψα

]T
. (4.54)

The γa∇aΨ = 0 property can no longer be used to simplify the expression because the coeffi-
cients of ∇ββ̇χα̇ and ∇ββ̇ψα are symmetric in α̇ & β̇ and α & β respectively. However, for D(1)

to be a symmetry, γa∇aD
(1)Ψ must equal zero. Hence, given Ψ is an arbitrary solution, the

only way to get γa∇aD
(1)Ψ = 0 is to get

0 = ∇(α(α̇ξβ)β̇) + εαβ

(
1

2
∇γ

(α̇ξγβ̇) + ξα̇β̇

)
,

0 = ∇αα̇(ξ) +∇ β̇
α (ξα̇β̇) + ξββ̇Eαβα̇β̇ − 3Fξαα̇,

0 = ∇(α(α̇ξβ)β̇) + εα̇β̇
(

1

2
∇(α

γ̇ξ
β)γ̇ − ξαβ

)
and

0 = ∇αα̇(ξ)−∇ α̇
β (ξαβ) + ξββ̇E

αβα̇β̇ − 3Fξαα̇ . (4.55)

Notice that in the 1st and 3rd of these equations, the term with the ε coefficient cannot cancel
out the other term because the other term is symmetric in the indices of the ε. Therefore,

0 = ∇(α(α̇ξβ)β̇) ⇐⇒ 0 = ∇(α(α̇ξβ)β̇) ,

0 =
1

2
∇γ

(α̇ξγβ̇) + ξα̇β̇ ⇐⇒ ξα̇β̇ =
1

2
∇ (α̇
γ ξγβ̇) and

0 =
1

2
∇(α

γ̇ξ
β)γ̇ − ξαβ ⇐⇒ ξαβ =

1

2
∇(α

γ̇ξ
β)γ̇ . (4.56)

The first equation implies ξαα̇ is conformal Killing by corollary 3.3.1 and the latter two equations
are two of the relations to be proven. �
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Corollary 4.4.1. Given ξαα̇, D(1) is unique up to the addition of a constant.

Proof. In D(1), given ξαα̇, ξαβ and ξα̇β̇ are both determined by the lemma.
Hence, only ξ remains to be found. Let ξ = A and ξ = B be two solutions.
By equation 4.54, to be a symmetry,

0 =

[
(∇αα̇(ξ) +∇ β̇

α (ξα̇β̇) + ξββ̇Eαβα̇β̇ − 3Fξαα̇)χα̇

(∇αα̇(ξ)−∇ α̇
β (ξαβ) + ξββ̇E

αβα̇β̇ − 3Fξαα̇)ψα

]
. (4.57)

Then, since Ψ is an arbitrary solution,

0 = ∇αα̇(ξ) +∇ β̇
α (ξα̇β̇) + ξββ̇Eαβα̇β̇ − 3Fξαα̇ and

0 = ∇αα̇(ξ)−∇ α̇
β (ξαβ) + ξββ̇E

αβα̇β̇ − 3Fξαα̇ . (4.58)

It will suffice to consider either one of these equations alone; I will choose the first. Then,

∇αα̇(A) = ∇αα̇(B) = −∇ β̇
α (ξα̇β̇)− ξββ̇Eαβα̇β̇ + 3Fξαα̇

=⇒ ∇αα̇(A−B) = 0

=⇒ ∂αα̇(A−B) = 0 as A and B are scalars. (4.59)

Therefore, A−B is a constant.
Hence, any two solutions for ξ differ at most by a constant =⇒ given ξαα̇, D(1) is determined
up to a constant. �

The lemma means the only term left to constrain in D(1) is ξ. As in the previous chapter, ξ can
be determined by ensuring D(1)Ψ transforms the same way as Ψ under Weyl transformations.
By the exact same reasoning as in the paragraph following equation 3.58, the only physically
admissible ansatz for ξ is A∇αα̇ξ

αα̇ for a constant, A ∈ R.

Lemma 4.5. In D(1), if ξ = A∇αα̇ξ
αα̇, then A = 3/8 to get D′(1)Ψ′ = e3σ/2D(1)Ψ under a

Weyl transformation.

Proof. Under a Weyl transformation,

∇′a = (1 + σ)∇a −∇b(σ)Mab . (4.60)

Translating to spinors,

∇′αα̇ = (1 + σ)∇αα̇ +
1

2
(σa)αα̇(σ̃b)β̇β∇ββ̇(σ)((σab)

µνMµν − (σ̃ab)
µ̇ν̇M µ̇ν̇)

= (1 + σ)∇αα̇ −
1

8
(σa)αα̇(σ̃b)β̇β∇ββ̇(σ)(εµγ((σa)γγ̇(σ̃b)

γ̇ν − (σb)γγ̇(σ̃a)
γ̇ν)Mµν

− εν̇γ̇((σ̃a)µ̇γ(σb)γγ̇ − (σ̃b)
µ̇γ(σa)γγ̇)M µ̇ν̇)

= (1 + σ)∇αα̇ −
1

2
∇ββ̇(σ)(εµγ(εαγεα̇γ̇ε

νβεγ̇β̇ − δγ̇α̇δναδ
β̇
γ̇δ

β
γ )Mµν

− εν̇γ̇(δγαδ
µ̇
α̇δ

β
γδ

β̇
γ̇ − εαγεα̇γ̇εβγεβ̇µ̇)M µ̇ν̇)

= (1 + σ)∇αα̇ +∇β
α̇(σ)Mαβ +∇ β̇

α (σ)M α̇β̇ . (4.61)

Next, since ξαα̇ is conformal Killing, by lemma 3.5, ξ′αα̇ = (1− σ)ξαα̇. Thus,

ξ′αα̇∇′αα̇ = (1− σ)ξαα̇((1 + σ)∇αα̇ +∇β
α̇(σ)Mαβ +∇ β̇

α (σ)M α̇β̇)

= ξαα̇∇αα̇ + ξαα̇∇β
α̇(σ)Mαβ + ξαα̇∇ β̇

α (σ)M α̇β̇ . (4.62)
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∇′αα̇ξ′αα̇ = ((1 + σ)∇αα̇ +∇β
α̇(σ)Mαβ +∇ β̇

α (σ)M α̇β̇)((1− σ)ξαα̇)

= ∇αα̇ξ
αα̇ − ξαα̇∇αα̇(σ) +

1

2
∇β

α̇(σ)(δααξ
α̇

β + δαβξ
α̇

α )

+
1

2
∇ β̇
α (σ)(δα̇α̇ξ

α
β̇

+ δα̇
β̇
ξαα̇)

= ∇αα̇ξ
αα̇ − 4ξαα̇∇αα̇(σ) (4.63)

Then, by lemma 4.4,

ξ′αβ =
1

2
∇′(αα̇ξ

′β)α̇

=
1

2
((1 + σ)∇(α

α̇ +∇γ
α̇(σ)M (α

γ +∇(αβ̇(σ)M α̇β̇)((1− σ)ξβ)α̇)

= ξαβ − 1

2
∇(α

α̇(σ)ξβ)α̇ +
1

4
∇γ

α̇(σ)(ε(αβ)ξ α̇
γ + δ(βγξ

α)α̇)

+
1

4
∇(αβ̇(σ)(δα̇α̇ξ

β)

β̇
+ δα̇

β̇
ξ
β)
α̇)

= ξαβ −∇(α
α̇(σ)ξβ)α̇ . (4.64)

ξ′α̇β̇ =
1

2
∇′ (α̇

α ξ′αβ̇)

=
1

2
((1 + σ)∇ (α̇

α +∇β(α̇(σ)Mαβ +∇ γ̇
α (σ)M

(α̇
γ̇)((1− σ)ξαβ̇))

= ξα̇β̇ − 1

2
∇ (α̇
α (σ)ξ′αβ̇) +

1

4
∇β(α̇(σ)(δααξ

β̇)
β + δαβξ

β̇)
α )

+
1

4
∇ γ̇
α (σ)(ε(α̇β̇)ξαγ̇ + δ

(β̇
γ̇ξ

αα̇))

= ξα̇β̇ −∇ (α̇
α (σ)ξ′αβ̇) (4.65)

Finally, putting all of these pieces together,

D′(1)Ψ′

= (ξαα̇∇αα̇ + ξαα̇∇β
α̇(σ)Mαβ + ξαα̇∇ β̇

α (σ)M α̇β̇ + (ξαβ −∇(α
α̇(σ)ξβ)α̇)Mαβ

+ (ξα̇β̇ −∇ (α̇
α (σ)ξ′αβ̇))M α̇β̇ + A∇αα̇(ξαα̇)− 4Aξαα̇∇αα̇(σ))

((
1 +

3

2
σ

)
Ψ

)
=

(
1 +

3

2
σ

)
D(1)Ψ +

3

2
ξαα̇∇αα̇(σ)Ψ + ξαα̇∇β

α̇(σ)MαβΨ + ξαα̇∇ β̇
α (σ)M α̇β̇Ψ

−∇(α
α̇(σ)ξβ)α̇MαβΨ−∇ (α̇

α (σ)ξ′αβ̇)M α̇β̇Ψ− 4Aξαα̇∇αα̇(σ)Ψ

=

(
1 +

3

2
σ

)
D(1)Ψ +

(
3

2
− 4A

)
ξαα̇∇αα̇(σ)Ψ + ξαα̇∇β

α̇(σ)MαβΨ + ξαα̇∇ β̇
α (σ)M α̇β̇Ψ

−∇β
α̇(σ)ξαα̇MαβΨ−∇ β̇

α (σ)ξ′αα̇M α̇β̇Ψ

=

(
1 +

3

2
σ

)
D(1)Ψ +

(
3

2
− 4A

)
ξαα̇∇αα̇(σ)Ψ . (4.66)

Therefore, to get the required transformation, it must be that 3/2−4A = 0 ⇐⇒ A = 3/8. �

Hence, the most general 1st order symmetry of the massless Dirac operator is,

D(1) = ξαα̇∇αα̇ +
1

2
∇(α

α̇ξ
β)α̇Mαβ +

1

2
∇ (α̇
α ξαβ̇)M α̇β̇ +

3

8
∇αα̇(ξαα̇) (4.67)

up to the addition of a constant.
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Theorem 4.6. D(1) is always a symmetry of the massless Dirac operator.

Proof. Continuing from the proof of lemma 4.4, and in particular equation 4.54 with
ξαβ = 1

2
∇(α

α̇ξ
β)α̇, ξα̇β̇ = 1

2
∇ (α̇
α ξαβ̇), ξ = ∇αα̇ξ

αα̇ and ξαα̇ conformal Killing,

γa∇aD
(1)Ψ =

[
(∇αα̇(ξ) +∇ β̇

α (ξα̇β̇) + ξββ̇Eαβα̇β̇ − 3Fξαα̇)χα̇

(∇αα̇(ξ)−∇ α̇
β (ξαβ) + ξββ̇E

αβα̇β̇ − 3Fξαα̇)ψα

]

=

[
(3
8
∇αα̇∇ββ̇(ξββ̇)− 1

2
∇ β̇
α ∇

β
(α̇ξββ̇) + ξββ̇Eαβα̇β̇ − 3Fξαα̇)χα̇

(3
8
∇αα̇∇ββ̇(ξββ̇)− 1

2
∇ α̇
β ∇

(α

β̇
ξβ)β̇ + ξββ̇E

αβα̇β̇ − 3Fξαα̇)ψα

]
. (4.68)

Then, apply the conformal Killing equation and equation 3.28 along the way,

∇αα̇∇ββ̇ξ
ββ̇ = ∇ββ̇∇αα̇ξββ̇ + [∇αα̇,∇ββ̇]ξββ̇

= ∇ββ̇

(
∇(α(α̇ξβ)β̇) +

1

2
εα̇β̇∇

γ̇
(α ξβ)γ̇ +

1

2
εαβ∇γ

(α̇ξγβ̇) +
1

4
εαβεα̇β̇∇

γγ̇ξγγ̇

)
+ (R µν

αα̇ββ̇
Mµν +R µ̇ν̇

αα̇ββ̇
Mµ̇ν̇)ξ

ββ̇

=
1

2
∇β

α̇∇
β̇

(α ξβ)β̇ +
1

2
∇ β̇
α ∇

β
(α̇ξββ̇) +

1

4
∇αα̇∇ββ̇ξ

ββ̇

−R β

αα̇ββ̇µ
ξµβ̇ −R β̇

αα̇ββ̇µ̇
ξβµ̇ . (4.69)

Rearranging,

∇αα̇∇ββ̇ξ
ββ̇ =

2

3
∇β

α̇∇
β̇

(α ξβ)β̇ +
2

3
∇ β̇
α ∇

β
(α̇ξββ̇)

− 4

3
(εα̇β̇C

β
αβµ + εαβE

β

µ α̇β̇
+ εα̇β̇(−εαµδββ − δ

β
αεβµ)F )ξµβ̇

− 4

3
(εαβC

β̇

α̇β̇µ̇
+ εα̇β̇E

β̇
αβµ̇ + εαβ(−εα̇µ̇δβ̇β̇ − δ

β̇
α̇εβ̇µ̇)F )ξβµ̇

=
2

3
∇β

α̇∇
β̇

(α ξβ)β̇ +
2

3
∇ β̇
α ∇

β
(α̇ξββ̇) −

8

3
ξββ̇Eαβα̇β̇ + 8Fξαα̇ . (4.70)

By raising the indices (to use in the bottom two components of equation 4.68),

∇αα̇∇ββ̇ξ
ββ̇ =

2

3
∇ α̇
β ∇

(α

β̇
ξβ)β̇ +

2

3
∇α

β̇
∇ (α̇
β ξββ̇) − 8

3
ξββ̇E

αβα̇β̇ + 8Fξαα̇ . (4.71)

The preceding two equations can be simplified as follows.

∇β
α̇∇

β̇
(α ξβ)β̇ = ∇β

α̇∇ β̇
α ξββ̇ −

1

2
εαβ∇β

α̇∇γβ̇ξγβ̇

= ∇ β̇
α ∇

β
α̇ξββ̇ + [∇β

α̇,∇ β̇
α ]ξββ̇ −

1

2
∇αα̇∇ββ̇ξ

ββ̇

= ∇ β̇
α ∇

β
(α̇ξββ̇) +

1

2
εα̇β̇∇

β̇
α ∇βγ̇ξβγ̇ −

1

2
∇αα̇∇ββ̇ξ

ββ̇

+ (Rβ β̇µν
α̇α Mµν +Rβ β̇µ̇ν̇

α̇α M µ̇ν̇)ξββ̇

= ∇ β̇
α ∇

β
(α̇ξββ̇) + (Rβ β̇ µ

α̇α β ξµβ̇ +Rβ β̇ µ̇

α̇α β̇
ξβµ̇) (4.72)

Thus,

∇β
α̇∇

β̇
(α ξβ)β̇ = ∇ β̇

α ∇
β
(α̇ξββ̇) + (−δβ̇α̇C

β µ
αβ + δβαE

µ β̇
β α̇ − δ

β̇
α̇(−δββδ

µ
α + εαβε

µβ)F )ξµβ̇

+ (δβαC
β̇ µ̇

α̇ β̇
− δβ̇α̇E

β µ̇

αβ̇
+ δβα(εα̇β̇ε

µ̇β̇ − δµ̇α̇δ
β̇

β̇
)F )ξβµ̇

= ∇ β̇
α ∇

β
(α̇ξββ̇) (4.73)
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Hence,

∇αα̇∇ββ̇ξ
ββ̇ =

4

3
∇ β̇
α ∇

β
(α̇ξββ̇) −

8

3
ξββ̇Eαβα̇β̇ + 8Fξαα̇

⇐⇒ 3

8
∇αα̇∇ββ̇ξ

ββ̇ =
1

2
∇ β̇
α ∇

β
(α̇ξββ̇) − ξ

ββ̇Eαβα̇β̇ + 3Fξαα̇ . (4.74)

The previous equation combined with equation 4.73 immediately leads to

3

8
∇αα̇∇ββ̇ξ

ββ̇ =
1

2
∇ α̇
β ∇

(α

β̇
ξβ)β̇ − ξββ̇E

αβα̇β̇ + 3Fξαα̇ . (4.75)

Then, substituting equations 4.74 and 4.75 into equation 4.68 immediately results in
γa∇aD

(1)Ψ = 0, i.e. D(1) is a symmetry of γa∇a. �

4.4 2nd order symmetries

Theorem 4.7. The only candidate for a physically admissible, 2nd order higher symmetry of
the massless Dirac operator such that D′(2)Ψ′ = e3σ/2D(2)Ψ under a Weyl transformation is

D(2) = ξαβα̇β̇∇αα̇∇ββ̇ +
2

3
∇(α

β̇
ξβγ)α̇β̇∇αα̇Mβγ +

2

3
∇ (α̇
β ξαββ̇γ̇)∇αα̇M β̇γ̇ +

8

9
∇ββ̇(ξαβα̇β̇)∇αα̇

+

(
2

9
∇(α

α̇∇γβ̇ξ
β)γα̇β̇ +

1

3
E

(α

γα̇β̇
ξβ)γα̇β̇

)
Mαβ

+

(
2

9
∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ +
1

3
E

(α̇
αβγ̇ ξαββ̇)γ̇

)
M α̇β̇ +

2

15
∇αα̇∇ββ̇(ξαβα̇β̇)− 7

10
Eαβα̇β̇ξ

αβα̇β̇ .

(4.76)

However, D(2) may not be a symmetry of γa∇a in general. Instead, given γa∇aΨ = 0,

γa∇aD
(2)Ψ =

[
1

3
(C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ − C γµ

αβ ξγµα̇β̇)∇ββ̇χα̇ +

(
4

15
Cµγβ

α∇
β̇

(β ξγµ)α̇β̇

− 1

15
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇) −
2

15
ξγβγ̇α̇∇

µ
γ̇(Cαβγµ)− 7

15
ξ γβ̇γ̇
α ∇ µ̇

γ (C α̇β̇γ̇µ̇)

)
χα̇,

1

3
(Cαβ

γµξ
γµα̇β̇ − C α̇β̇

γ̇µ̇ξ
αβγ̇µ̇)∇ββ̇ψα +

(
4

15
C α̇
µ̇γ̇β̇
∇ (β̇
β ξαβγ̇µ̇)

− 1

15
Cα

βγµ∇
(µ

β̇
ξγβ)α̇β̇ − 2

15
ξα
γβ̇γ̇
∇γ

µ̇(C α̇β̇γ̇µ̇)− 7

15
ξ α̇
γβγ̇ ∇ γ̇

µ (Cαβγµ)

)
ψα

]T
.

(4.77)

Proof. This is easily the longest and most technical proof in my thesis. I have presented it in
full in appendix C. �

Corollary 4.7.1. D(2) is a symmetry of γa∇a on conformally flat spaces.

Proof. The Weyl tensor is zero on conformally flat spaces. �

Again, like with ∆, a truly “higher” symmetry - i.e. one which is not a composition of 1st order
symmetries - can be guaranteed on conformally flat spaces, but not on arbitrary manifolds.
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Chapter 5

Conformal geometry and the path
forward

I have successfully constructed the most general symmetry operator candidates for ∆ and γa∇a

at the 1st and 2nd order and found they are indeed higher symmetries on arbitrary manifolds
and conformally flat manifolds respectively. However, I think it is clear from reading appen-
dices B and C that extending to 3rd order and higher will be impossible within the limits of
human endurance and perseverance.
Therefore, a more efficient and elegant approach will be required to reduce the computational
complexity of the task. As it happens, such an approach exists - although I met it too late in
the progress of my master’s to use it. The vierbein approach to differential geometry makes
manifest an invariance under both general coordinate transformations and local Lorentz trans-
formations. But, ∆ϕ = 0 and γa∇aΨ = 0 are both conformally invariant equations of motion.
The additional Weyl symmetry is not naturally accounted for in ∇a = e m

a ∂m + 1
2
ωabcM

bc. The
formalism of “conformal geometry” seeks to rectify this shortfall1. Here I will briefly recount
its features as discussed in [23] and even more briefly sketch its application to the problems I
have considered2.

First, consider the Poincare algebra, io(3, 1). With an appropriate choice of basis, it can
be defined as an abstract Lie algebra with

[Mab,Mcd] = 2ηd[aMb]c − 2ηc[aMb]d, [Pa,Mbc] = 2ηa[bPc] and [Pa, Pb] = 0 (5.1)

as the fundamental Lie brackets. Physically, Pa generate translations and Mab generate Lorentz
transformations. The form of the covariant derivative,

∇a = ∂a +
1

2
ωabcM

bc , (5.2)

is directly determined by the generators of io(3, 1) as follows. One cannot use partial deriva-
tives in differential geometry because given a (non-scalar) tensor, T , ∂aT no longer transforms
covariantly under local Lorentz transformations3. The resolution is of course well known - add
a compensating field. Different tensors transform differently under Lorentz transformations
though.
Hence, the compensating field must itself depend on the tensor ∇a acts on, i.e. the compen-
sating field must itself be an operator.

1Of course, if one is not dealing with a conformal field theory, then there is no shortfall. Conformal geometry
is only useful for conformally invariant theories.

2My notational conventions will be somewhat different to [23] though.
3It can be assumed T is a scalar with respect to general coordinate transformations because any curved

space indices can be converted to local Lorentz indices by vierbeins and inverse vierbeins.
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Since it is local Lorentz transformations that are the issue, the compensating field must be
proportional to the Lorentz generators, thereby resulting in the form, ∇a = ∂a + 1

2
ωabcM

bc. A
compensating field proportional to Pa need not be added because under a Poincare transfor-
mation, (Λ, a), a tensor transforms as

T ′(x) = (R[Λ]T )((Λ, a)−1x) (5.3)

for some representation, R, of SO↑(3, 1). Note that R is only a representation of SO↑(3, 1),
not ISO↑(3, 1). Indeed the effect of translation is already accounted for in ∂a because under an
infinitesimal translation, x′a = xa − ξa,

T ′(x) = T (x+ ξ)

= T (x) + ξa∂aT (x)

⇐⇒ δT (x) = ξa∂aT (x) . (5.4)

Thus, the partial derivative is already the generator of translations, hence justifying why only
a Lorentz generator compensating field is necessary. Finally, the exact form of ωabc is fixed by
enforcing that ∇a is torsion free and ∇aT transforms covariantly for any tensor, T .

However, there is no reason why this logic in constructing ∇a cannot be applied to a larger
gauge group. Consider the conformal algebra, io(4, 2), which can be defined as an abstract Lie
algebra with

[Mab,Mcd] = 2ηd[aMb]c − 2ηc[aMb]d, [Pa,Mbc] = 2ηa[bPc], [Ka,Mbc] = 2ηa[bKc],

[D, Pa] = Pa, [D, Ka] = −Ka and [Ka, Pb] = 2ηabD + 2Mab (5.5)

as the fundamental non-zero Lie brackets. By inspection, the Poincare algebra is a subalgebra
of the conformal algebra. The extra generators, D and Ka, represent dilatations and special
conformal transformations respectively - the new symmetries present in a conformal field theory
which are lacking in a merely Lorentz invariant theory.
Therefore, in conformal field theory, it makes sense to use “conformal covariant derivatives4,”

Da = e m
a ∂m +

1

2
ω̂abcM

bc − f ba Kb − baD , (5.6)

for some connection coefficients, ω̂abc, f
b
a and ba. All three are again determined by requiring

Da to be torsion free and requiring DaT to transform covariantly under local Lorentz, dilata-
tion and special conformal transformations.

While it is more convenient to work with Da instead of ∇a when dealing with conformally
invariant equations, it would be even more advantageous if one could transition between the
two derivatives, e.g. do the calculations with Da, but present the final result in terms of ∇a

to compare with other work. Since the Poincare group is a subgroup of the conformal group,
going from Da to ∇a amounts to picking a gauge - or “degauging” - within the conformal
group. At this point, I will hasten the discussion and present some results from [23] without
proof. From [23], it can be shown that

• When acting on a tensor, T , which transforms as T ′ = enσT under a Weyl transformation,
e′ ma = eσe m

a , DT = nT and KaT = 0.

• For any element, X ∈ io(4, 2)/span({Pa}), X’s commutation relation/Lie bracket with
Da is the same as its commutation relation/Lie bracket with Pa.

4This is not necessarily standard terminology or notation, but it will work for my purposes.
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• Upon choosing the gauge ba = 0, ω̂abc and f b
a are uniquely determined and lead to

Da = ∇a − 1
2
PabK

b where Pab = 1
2
Rab − 1

12
ηabR is the Schouten tensor.

• In the ba = 0 gauge, [Da, Db] = 1
2
CabcdM

cd + 1
2
∇d(Cabcd)K

c.

These properties are sufficient to translate from Da to ∇a. Rather than presenting abstract
justification of this assertion, in this case I think it will be better to present the following
lemma as an illustrative example.

Lemma 5.1. In the ba = 0 gauge, D(2) from theorem 4.7 can be re-written as

D(2) = ξαβα̇β̇Dαα̇Dββ̇ +
2

3
D

(α

β̇
ξβγ)α̇β̇Dαα̇Mβγ +

2

3
D

(α̇
β ξαββ̇γ̇)Dαα̇M β̇γ̇ +

8

9
Dββ̇(ξαβα̇β̇)Dαα̇

+
2

9
D

(α
α̇Dγβ̇ξ

β)γα̇β̇Mαβ +
2

9
D (α̇
α Dβγ̇ξ

αββ̇)γ̇M α̇β̇ +
2

15
Dαα̇Dββ̇(ξαβα̇β̇) . (5.7)

Proof. I will have to convert some of the results above to spinor notation along the way.

Dαα̇ = (σa)αα̇(∇a −
1

2
PabK

b)

= ∇αα̇ −
1

2
Pαα̇bK

b

= ∇αα̇ −
1

2
Pαα̇ββ̇Kγγ̇

(
− 1

2
(σ̃b)

β̇β

)(
− 1

2
(σ̃b)γ̇γ

)
= ∇αα̇ +

1

4
Pαα̇ββ̇K

ββ̇ (5.8)

Pαα̇ββ̇ = (σa)αα̇(σb)ββ̇

(
1

2
Rab −

1

12
ηabR

)
= (σa)αα̇(σb)ββ̇

(
1

2
Rab −

1

8
ηabR +

1

24
ηabR

)
= Eαβα̇β̇ +

1

24
(σa)αα̇(σa)ββ̇R

= Eαβα̇β̇ −
1

12
εαβεα̇β̇R

= Eαβα̇β̇ − εαβεα̇β̇F (5.9)

Likewise, since Da has the same commutation relations as Pa (except for [Da, Db]),

[Kαα̇, Dββ̇] = (σa)αα̇(σb)ββ̇(2ηabD + 2Mab)

= 2(σa)αα̇(σa)ββ̇D + 2(σa)αα̇(σb)ββ̇Mab

= −4εαβεα̇β̇D + 2(σa)αα̇(σb)ββ̇Mab and (5.10)

(σa)αα̇(σb)ββ̇Mab = (σa)αα̇(σb)ββ̇((σab)µνM
µν − (σ̃ab)µ̇ν̇M

µ̇ν̇)

= −1

4
ενρ(σ

a)αα̇(σb)ββ̇((σa)µγ̇(σ̃b)
γ̇ρ − (σb)µγ̇(σ̃a)

γ̇ρ)Mµν

+
1

4
εµ̇ρ̇(σ

a)αα̇(σb)ββ̇((σ̃a)
ρ̇γ(σb)γν̇ − (σ̃b)

ρ̇γ(σa)γν̇)M
µ̇ν̇

= −ενρεµαεγ̇α̇δρβδ
γ̇

β̇
Mµν + ενρεµβεγ̇β̇δ

ρ
αδ

γ̇
α̇M

µν + εµ̇ρ̇δ
γ
αδ

ρ̇
α̇εγβεν̇β̇M

µ̇ν̇

− εµ̇ρ̇δγβδ
ρ̇

β̇
εγαεν̇α̇M

µ̇ν̇

= 2εα̇β̇Mαβ + 2εαβM α̇β̇ . (5.11)

49



In summary,

[Kαα̇, Dββ̇] = −4εαβεα̇β̇D + 4εα̇β̇Mαβ + 4εαβM α̇β̇ . (5.12)

It is now time to convert the expression claimed in the lemma to the ∇a formalism term by
term. Since ξ′αβα̇β̇ = e−2σξαβα̇β̇ and Ψ′ = e3σ/2Ψ upon e′ ma = eσe m

a , by one one of the

properties above, Kγγ̇ξ
αβα̇β̇ = 0, Kαα̇Ψ = 0, Dξαβα̇β̇ = −2ξαβα̇β̇ and DΨ = 3

2
Ψ.

Using these properties, in the ba = 0 gauge,

ξαβα̇β̇Dαα̇Dββ̇Ψ

= ξαβα̇β̇
(
∇αα̇ +

1

4
Eαγα̇γ̇K

γγ̇ − 1

4
FKαα̇

)
Dββ̇Ψ

= ξαβα̇β̇∇αα̇Dββ̇Ψ +
1

4
ξαβα̇β̇Eαγα̇γ̇[K

γγ̇, Dββ̇]Ψ− 1

4
ξαβα̇β̇F [Kαα̇, Dββ̇]Ψ

= ξαβα̇β̇∇αα̇

(
∇ββ̇ +

1

4
Eβγβ̇γ̇K

γγ̇ − 1

4
FKββ̇

)
Ψ +

1

4
ξαβα̇β̇Eαγα̇γ̇(−4δγβδ

γ̇

β̇
D + 4δγβM

γ̇

β̇

+ 4δγ̇
β̇
Mγ

β )Ψ− 1

4
ξαβα̇β̇F (−4εαβεα̇β̇D + 4εα̇β̇Mαβ + 4εαβM α̇β̇)Ψ

= ξαβα̇β̇∇αα̇∇ββ̇Ψ−
3

2
ξαβα̇β̇Eαβα̇β̇Ψ− ξ

αβγ̇β̇E α̇
αβγ̇ M α̇β̇Ψ− ξ

γβα̇β̇Eα
γα̇β̇

MαβΨ

= ξαβα̇β̇∇αα̇∇ββ̇Ψ−
3

2
ξαβα̇β̇Eαβα̇β̇Ψ− E

(α̇
αβγ̇ ξαββ̇)γ̇M α̇β̇Ψ− E

(α

γα̇β̇
ξβ)γα̇β̇MαβΨ and (5.13)

D
(α

β̇
ξβγ)α̇β̇Dαα̇MβγΨ

=
(
∇(α

β̇
+

1

4
E

(α

µβ̇µ̇
K |µ|µ̇ − 1

4
FK

(α

β̇

)
(ξβγ)α̇β̇)

(
∇αα̇ +

1

4
Eανα̇ν̇K

νν̇ − 1

4
FKαα̇

)
(MβγΨ)

= ∇(α

β̇
ξβγ)α̇β̇

(
∇αα̇MβγΨ +

1

4
Eανα̇ν̇ [K

νν̇ ,Mβγ]Ψ−
1

4
F [Kαα̇,Mβγ]Ψ

)
= ∇(α

β̇
ξβγ)α̇β̇∇αα̇MβγΨ (5.14)

since [Ka,Mbc] = 2ηa[bKc] and KcΨ = 0 anyway.

Likewise, D
(α̇
β ξαββ̇γ̇)Dαα̇M β̇γ̇Ψ = ∇ (α̇

β ξαββ̇γ̇)∇αα̇M β̇γ̇Ψ by an analogous calculation. Next,

Dββ̇(ξαβα̇β̇)Dαα̇Ψ =

(
∇ββ̇ +

1

4
Pββ̇γγ̇K

γγ̇

)
(ξαβα̇β̇)

(
∇αα̇ +

1

4
Pαα̇µµ̇K

µµ̇

)
(Ψ)

= ∇ββ̇(ξαβα̇β̇)∇αα̇Ψ . (5.15)

D (α̇
α Dβγ̇ξ

αββ̇)γ̇

=

(
∇ (α̇
α +

1

4
E

(α̇
αµµ̇ Kµ|µ̇| − 1

4
FK (α̇

α

)
(Dβγ̇ξ

αββ̇)γ̇)

= ∇ (α̇
α Dβγ̇ξ

αββ̇)γ̇ +
1

4
E

(α̇
αµµ̇ [Kµ|µ̇|, Dβγ̇]ξ

αββ̇)γ̇ − 1

4
F [K (α̇

α , Dβγ̇]ξ
αββ̇)γ̇

= ∇ (α̇
α

(
∇βγ̇ +

1

4
Pβγ̇µµ̇K

µµ̇

)
ξαββ̇)γ̇ + E

(α̇
αµµ̇ (−δµβδ

|µ̇|
γ̇D + δ

|µ̇|
γ̇M

µ
β + δµβM

|µ̇|
γ̇)ξ

αββ̇)γ̇

− F (−εαβδ(α̇γ̇D + εαβM
(α̇
γ̇ + δ

(α̇
γ̇Mαβ)ξαββ̇)γ̇

= ∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ + 2E
(α̇

αβγ̇ ξαββ̇)γ̇ + E
(α̇

αµγ̇ Mµ
β ξ

αββ̇)γ̇ + E
(α̇

αβµ̇ M
|µ̇|
γ̇ξ
αββ̇)γ̇

− FMαβξ
αβα̇β̇ (5.16)
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D (α̇
α Dβγ̇ξ

αββ̇)γ̇

= ∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ + 2E
(α̇

αβγ̇ ξαββ̇)γ̇ +
1

2
E

(α̇
αµγ̇ (εµαξ

ββ̇)γ̇
β + δαβξ

µββ̇)γ̇ + εµβξ
α β̇)γ̇
β + δββξ

αµβ̇)γ̇)

+
1

2
E

(α̇
αβµ̇ (−εβ̇)µ̇ξαβ γ̇

γ̇ + δ
β̇)
γ̇ξ

αβµ̇γ̇ + ε|µ̇γ̇|ξ
αββ̇)

γ̇ + δ
|γ̇|
γ̇ξ

αββ̇)µ̇)

− F (δααξ
βα̇β̇

β + δαβξ
βα̇β̇

α + δβαξ
α α̇β̇
β + δββξ

α α̇β̇
α )

= ∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ + 6E
(α̇

αβγ̇ ξαββ̇)γ̇ . (5.17)

By a completely analogous calculation, D
(α
α̇Dβγ̇ξ

β)γα̇β̇ = ∇(α
α̇∇βγ̇ξ

β)γα̇β̇ + 6E
(α

γα̇β̇
ξβ)γα̇β̇.

Dαα̇Dββ̇ξ
αβα̇β̇

=

(
∇αα̇ +

1

4
Eαβα̇β̇K

ββ̇ − 1

4
FKαα̇)

)
Dββ̇ξ

αβα̇β̇

= ∇αα̇Dββ̇ξ
αβα̇β̇ +

1

4
Eαγα̇γ̇[K

γγ̇, Dββ̇]ξαβα̇β̇ − 1

4
F [Kαα̇, Dββ̇]ξαβα̇β̇

= ∇αα̇Dββ̇ξ
αβα̇β̇ +

1

4
Eαγα̇γ̇(−4δγβδ

γ̇

β̇
D + 4δγβM

γ̇

β̇
+ 4δγ̇

β̇
Mγ

β )ξαβα̇β̇

− 1

4
F (−4εαβεα̇β̇D + 4εα̇β̇Mαβ + 4εαβM α̇β̇)ξαβα̇β̇

= ∇αα̇

(
∇ββ̇ +

1

4
Pββ̇γγ̇K

γγ̇

)
ξαβα̇β̇ + 2Eαβα̇β̇ξ

αβα̇β̇

+
1

2
Eαβα̇γ̇(ε

γ̇α̇ξαβ β̇

β̇
+ δα̇

β̇
ξαβγ̇β̇ + εγ̇β̇ξαβα̇

β̇
+ δβ̇

β̇
ξαβα̇γ̇)

+
1

2
Eαγα̇β̇(εγαξ βα̇β̇

β + δαβξ
γβα̇β̇ + εγβξα α̇β̇

β + δββξ
αγα̇β̇)− 0

= ∇αα̇∇ββ̇ξ
αβα̇β̇ + 6Eαβα̇β̇ξ

αβα̇β̇ (5.18)

Finally, putting all these terms together,(
ξαβα̇β̇Dαα̇Dββ̇ +

2

3
D

(α

β̇
ξβγ)α̇β̇Dαα̇Mβγ +

2

3
D

(α̇
β ξαββ̇γ̇)Dαα̇M β̇γ̇ +

8

9
Dββ̇(ξαβα̇β̇)Dαα̇

+
2

9
D

(α
α̇Dγβ̇ξ

β)γα̇β̇Mαβ +
2

9
D (α̇
α Dβγ̇ξ

αββ̇)γ̇M α̇β̇ +
2

15
Dαα̇Dββ̇(ξαβα̇β̇)

)
Ψ

= ξαβα̇β̇∇αα̇∇ββ̇Ψ−
3

2
ξαβα̇β̇Eαβα̇β̇Ψ− E

(α̇
αβγ̇ ξαββ̇)γ̇M α̇β̇Ψ− E

(α

γα̇β̇
ξβ)γα̇β̇MαβΨ

+
2

3
∇(α

β̇
ξβγ)α̇β̇∇αα̇MβγΨ +

2

3
∇ (α̇
β ξαββ̇γ̇)∇αα̇M β̇γ̇Ψ +

8

9
∇ββ̇(ξαβα̇β̇)∇αα̇Ψ

+
2

9
(∇(α

α̇∇βγ̇ξ
β)γα̇β̇ + 6E

(α

γα̇β̇
ξβ)γα̇β̇)Mα̇β̇Ψ +

2

9
(∇ (α̇

α ∇βγ̇ξ
αββ̇)γ̇ + 6E

(α̇
αβγ̇ ξαββ̇)γ̇)M α̇β̇Ψ

+
2

15
(∇αα̇∇ββ̇(ξαβα̇β̇) + 6Eαβα̇β̇ξ

αβα̇β̇)Ψ

=

(
ξαβα̇β̇∇αα̇∇ββ̇ +

2

3
∇(α

β̇
ξβγ)α̇β̇∇αα̇Mβγ +

2

3
∇ (α̇
β ξαββ̇γ̇)∇αα̇M β̇γ̇ +

8

9
∇ββ̇(ξαβα̇β̇)∇αα̇

+

(
2

9
∇(α

α̇∇γβ̇ξ
β)γα̇β̇ +

1

3
E

(α

γα̇β̇
ξβ)γα̇β̇

)
Mαβ +

(
2

9
∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ +
1

3
E

(α̇
αβγ̇ ξαββ̇)γ̇

)
M α̇β̇

+
2

15
∇αα̇∇ββ̇(ξαβα̇β̇)− 7

10
Eαβα̇β̇ξ

αβα̇β̇

)
Ψ

= D(2)Ψ . (5.19)

�
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There are several advantages to writing D(2) this way. Most saliently, the Eαβα̇β̇ terms have
disappeared when transferring from ∇αα̇ to Dαα̇.
Therefore, simplifying γa∇aD

(2)Ψ in the conformal geometry formalism is identical to sim-
plifying the expression in flat space while keeping track of commutators; the contribution of
Eαβα̇β̇ terms is no longer an extra complication in curved space.
The commutators themselves are also more convenient in conformal geometry. In the proofs of
theorems 3.11 and 4.7, I spent many pages re-writing Riemann tensor descendant contributions
in terms of the Weyl tensor. However, in conformal geometry,
[Da, Db] = 1

2
CabcdM

cd+ 1
2
∇d(Cabcd)K

c in the ba gauge; the curvature factors are already written
in terms of the Weyl tensor.

More generally, if D(n) is a higher symmetry candidate of D and both D & D(n) are writ-
ten in the conformal geometry formalism, then proving DD(n)T = 0 (given DT = 0) on flat
space automatically lifts the result to conformally flat spaces.
e.g. If Eastwood’s ∆ higher symmetry candidates [17] were re-written in the conformal ge-
ometry formalism5, then his flat space proof that his candidate operators really are higher
symmetries of ∆ is automatically lifted to conformally flat spaces6. This seems to have been
implicitly done already in [20].

The process of actually finding candidate symmetry operators, D(n), is slightly different with
conformal covariant derivatives. Consider Ψ and γa∇a for example. In this approach,
D′(n)Ψ′ = e3σ/2D(n)Ψ upon e′ ma = eσe m

a becomes two equations, namely DD(n)Ψ = 3
2
D(n)Ψ

and KaD
(n)Ψ = 0. While the number of equations has doubled, there are fewer terms in D(n)

itself because the Eαβα̇β̇ “compensating terms” are no longer required. I think the two effects

roughly cancel in terms of calculation time saved or lost. Each of DD(n)Ψ = 3
2
D(n)Ψ and

KaD
(n)Ψ = 0 is analysed by pushing (via commutators) D and Ka towards Ψ and ξα1···αnα̇1···α̇n

where (assuming ξα1···αnα̇1···α̇n is conformal Killing - although I did not prove this for n ≥ 3)
DΨ = 3

2
Ψ, Dξα1···αnα̇1···α̇n = −nξα1···αnα̇1···α̇n , KaΨ = 0 and Kaξ

α1···αnα̇1···α̇n = 0. An analogous
procedure applies for ∆ and ϕ. I find the more pressing issue is that the “ad hoc” approach
to guessing terms which may comprise D(n) is invariant upon the variation in formalism.

5I suspect this should be possible because his tractor calculus approach is known to be related to the
approach I am describing in this section.

6Of course, ∆ itself would also need to be re-written in the conformal geometry formalism.
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Chapter 6

Conclusion

In this thesis I considered higher symmetries of the relativistic wave equations for spin-0 and
spin-1/2 massless particles in curved space. I computed the higher symmetries using spinor
methods, conformal Killing vectors/tensors and the Weyl transformation properties of matter
fields in a conformal field theory. The main results I derived were the following.

• The conformal d’Alembertian, ∆ = �− 1
6
R, has a unique 1st order higher symmetry,

D(1) = ξa∇a +
1

4
∇a(ξ

a) + ξ, (6.1)

where ξa(x) is an arbitrary conformal Killing vector of the manifold and ξ is any constant.

• At the 2nd order, ∆ has a unique (up to the addition of 1st order symmetries) physically
admissible higher symmetry candidate,

D(2) = ξab∇a∇b +
2

3
∇b(ξ

ab)∇a +
1

15
∇a∇b(ξ

ab)− 3

10
Rabξ

ab, (6.2)

where ξab(x) is an arbitrary conformal Killing tensor of the manifold. However, D(2) may
not be a symmetry in general. Instead,

∆D(2)ϕ =

(
4

15
Ca

bcd∇c(ξbd) +
4

5
∇d(Ca

bcd)ξbc
)
∇a(ϕ)

+

(
2

15
Cabcd∇a∇c(ξbd) +

2

5
∇c∇d(C

d
abc)ξ

ab +
4

15
∇d(C

d
abc)∇c(ξab)

)
ϕ . (6.3)

• The massless Dirac operator, γa∇a, has a unique 1st order symmetry,

D(1) = ξαα̇∇αα̇ +
1

2
∇(α

α̇ξ
β)α̇Mαβ +

1

2
∇ (α̇
α ξαβ̇)M α̇β̇ +

3

8
∇αα̇(ξαα̇) + ξ, (6.4)

where ξαα̇(x) is an arbitrary conformal Killing vector of the manifold and ξ is an arbitrary
constant.

• At the 2nd order, γa∇a has a unique (up to the addition of 1st order symmetries) phys-
ically admissible higher symmetry candidate,

D(2) = ξαβα̇β̇∇αα̇∇ββ̇ +
2

3
∇(α

β̇
ξβγ)α̇β̇∇αα̇Mβγ +

2

3
∇ (α̇
β ξαββ̇γ̇)∇αα̇M β̇γ̇

+
8

9
∇ββ̇(ξαβα̇β̇)∇αα̇ +

(
2

9
∇(α

α̇∇γβ̇ξ
β)γα̇β̇ +

1

3
E

(α

γα̇β̇
ξβ)γα̇β̇

)
Mαβ

+

(
2

9
∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ +
1

3
E

(α̇
αβγ̇ ξαββ̇)γ̇

)
M α̇β̇ +

2

15
∇αα̇∇ββ̇(ξαβα̇β̇)

− 7

10
Eαβα̇β̇ξ

αβα̇β̇, (6.5)
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where ξαβα̇β̇ is an arbitrary conformal Killing tensor of the manifold. However, D(2) may
not be a symmetry in general. Instead,

γa∇aD
(2)Ψ

= γa∇aD
(2)

[
ψα
χα̇

]
=

[
1

3
(C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ − C γµ

αβ ξγµα̇β̇)∇ββ̇χα̇ +

(
4

15
Cµγβ

α∇
β̇

(β ξγµ)α̇β̇

− 1

15
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇) −
2

15
ξγβγ̇α̇∇

µ
γ̇(Cαβγµ)− 7

15
ξ γβ̇γ̇
α ∇ µ̇

γ (C α̇β̇γ̇µ̇)

)
χα̇,

1

3
(Cαβ

γµξ
γµα̇β̇ − C α̇β̇

γ̇µ̇ξ
αβγ̇µ̇)∇ββ̇ψα +

(
4

15
C α̇
µ̇γ̇β̇
∇ (β̇
β ξαβγ̇µ̇)

− 1

15
Cα

βγµ∇
(µ

β̇
ξγβ)α̇β̇ − 2

15
ξα
γβ̇γ̇
∇γ

µ̇(C α̇β̇γ̇µ̇)− 7

15
ξ α̇
γβγ̇ ∇ γ̇

µ (Cαβγµ)

)
ψα

]T
. (6.6)

• Therefore, for both ∆ and γa∇a, while 2nd order symmetries definitely exist (just com-
pose two 1st order symmetries), not every rank two, conformal Killing tensor leads to a
symmetry. Conformally flat spaces (where the Weyl tensor is zero) are an exception1.
There, more general higher symmetries are possible - not just compositions of lower order
symmetries.

• Actually finding the conformal Killing vectors/tensors of a given manifold is beyond the
scope of this thesis.

There are a number of unanswered questions - and therefore future research directions - left at
the end of this project. I have shown that conformal flatness is a sufficient condition to have
higher symmetries at the 2nd order, but I have not considered necessary conditions - see [20]
for further discussion on that subject. The greater unknowns though are the generalisations
to arbitrary orders, D(n). I envisage that endeavour requires a more systematic approach than
the one I have presented here. It will certainly require a generalised method of constructing
D(n) and simplifying D(n)DT and I believe I have presented compelling evidence to suggest
conformal geometry would ease both tasks. An immediate step towards these overarching goals
would be to calculate third order higher symmetries of the conformal d’Alembertian and the
massless Dirac operator. As far as I am aware, neither task has been accomplished in general
in the literature, but should be readily achievable using the methods I have described in this
thesis.

1Conformal flatness is a sufficient, but perhaps not necessary, condition.
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Appendix A

Proof of theorem 2.10

I have to prove that under infinitesimal general coordinate, local Lorentz and Weyl transfor-
mations, covariant derivatives are changed as follows.

δ∇a =

[
ξb∇b +

1

2
KbcMbc,∇a

]
+ σ∇a −∇b(σ)Mab (A.1)

and for a conformal Killing vector, ξa(x),

δ∇a =

[
ξb∇b +

1

2
Kbc(ξ)Mbc,∇a

]
+ σ(ξ)∇a −∇b(σ(ξ))Mab = 0

for Kbc(ξ) =
1

2
(∇bξc −∇cξb) and σ(ξ) =

1

4
∇aξ

a . (A.2)

Let T be an arbitrary tensor (as T is arbitrary, there is no use in writing its indices).

δ∇aT = ∇′aT −∇aT (A.3)

Because I am considering infinitesimal transformations, the three transformations (general,
local Lorentz and Weyl) can be considered separately and added together as there cannot be
any “cross terms” in the infinitesimal case.
For the Weyl transformation1,

δ∇aT = ∇′aT −∇aT

= (∇a + σ∇a −∇b(σ)Mab)T −∇aT

= (σ∇a −∇b(σ)Mab)T . (A.4)

Next, for the local Lorentz and general coordinate parts of the proof, there is in some sense
nothing to prove depending on one’s choice of definitions. A tensor can be defined as an object
transforming as

T ′ = eξ
m(x)∂m+ 1

2
Kbc(x)MbcT (A.5)

when exponentiating the infinitesimal ξ′m = xm−ξm(x) and e′ ma (x) = e m
a (x)+K b

a (x)e m
b (x) of

a general coordinate and local Lorentz transformation. The fact that an antisymmetric matrix,
Kab, defines an infinitesimal (local) Lorentz transformation follows from the form of elements

1I will essentially devolve this part of the proof to equation F.2.
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in the Lie algebra, o(3, 1) ∼= sl(2,C). ∇a can then be defined as a derivative preserving this
covariant transformation property. Therefore,

∇′aT ′ = eξ
m(x)∂m+ 1

2
Kbc(x)Mbc∇aT

= eξ
m(x)∂m+ 1

2
Kbc(x)Mbc∇ae

−ξm(x)∂m− 1
2
Kbc(x)MbcT ′ (A.6)

=⇒ ∇′aT = eξ
m(x)∂m+ 1

2
Kbc(x)Mbc∇ae

−ξm(x)∂m− 1
2
Kbc(x)MbcT

= eξ
b(x)∂b+

1
2
Kbc(x)Mbc∇ae

−ξb(x)∂b− 1
2
Kbc(x)MbcT

= eξ
b(x)∇b− 1

2
ξd(x)ω(x) bc

d Mbc+
1
2
Kbc(x)Mbc∇ae

−ξb(x)∇b+ 1
2
ξd(x)ω(x) bc

d Mbc− 1
2
Kbc(x)MbcT

= eξ
b(x)∇b+ 1

2
K̃bc(x)Mbc∇ae

−ξb(x)∇b− 1
2
K̃bc(x)MbcT (A.7)

where K̃bc = Kbc − ξdω bc
d . Then, taking the infinitesimal of the last equation and renaming

K̃bc → Kbc,

∇′aT =

(
I + ξb(x)∇b +

1

2
Kbc(x)Mbc

)
∇a

(
I − ξb(x)∇b −

1

2
Kbc(x)Mbc

)
T

= ∇aT +

(
ξb(x)∇b +

1

2
Kbc(x)Mbc

)
∇aT −∇a

(
ξb(x)∇b +

1

2
Kbc(x)Mbc

)
T (A.8)

Therefore,

δ∇aT =

[
ξb(x)∇b +

1

2
Kbc(x)Mbc,∇a

]
T (A.9)

which completes the proof of the first half of the theorem.

Rather than postulating the transformation property of∇aT , the alternative is to simply define
∇a as e m

a ∂m+ 1
2
ωabcM

bc for ωabc = 1
2
(Cbca+Cacb−Cabc) and C c

ab = (e n
a ∂n(e m

b )−e n
b ∂n(e m

a ))e c
m .

This way, ∇a is just an operator constructed out of the vierbein and its transformation is de-
termined by that of the vierbein2. For completeness, I will prove the δ∇a transformation from
this perspective as well. First consider the local Lorentz transformation. The result I am trying
to get in this case is

1

2
[KbcMbc,∇a]T

=
1

2
(KbcMbc(∇a(T ))−∇a(K

bcMbc(T ))

=
1

2
(Kbc(ηab∇cT − ηac∇bT +∇aMbcT )−Kbc∇aMbcT −∇a(K

bc)MbcT )

= K b
a ∇bT −

1

2
∇a(Kbc)M

bcT

= K b
a e

m
b ∂mT +

1

2
K b
a ωbcdM

cdT − 1

2
e m
a ∂m(Kbc)M

bcT − 1

4
ωadeM

de(Kbc)M
bcT

= K b
a e

m
b ∂mT +

1

2
K d
a ωdbcM

bcT − 1

2
e m
a ∂m(Kbc)M

bcT

− 1

4
ωade(δ

d
bK

e
c − δebKd

c + δdcK
e
b − δecK d

b )M bcT

= K b
a e

m
b ∂mT +

1

2
K d
a ωdbcM

bcT − 1

2
e m
a ∂m(Kbc)M

bcT

− 1

4
(ωabeK

e
c − ωadbKd

c + ωaceK
e
b − ωadcK d

b )M bcT

= K b
a e

m
b ∂mT +

1

2
(K d

a ωdbc − e m
a ∂m(Kbc) +K d

c ωabd +K d
b ωadc)M

bcT . (A.10)

2Of course, ∇a is defined this way so that ∇aT transforms covariantly.
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On the other hand,

δ∇aT = ∇′aT −∇aT

= e′ ma ∂mT +
1

2
ω′abcM

bcT − e m
a ∂mT −

1

2
ωabcM

bcT

= K b
a e

m
b ∂mT +

1

2
(ω′abc − ωabc)M bcT

= K b
a e

m
b ∂mT +

1

4
(C ′bca + C ′acb − C ′abc − Cbca − Cacb + Cabc)M

bcT (A.11)

C ′abc − Cabc = ηcd(C
′ d
ab − C d

ab )

= ηcd((e
′ n
a ∂n(e′ mb )− e′ nb ∂n(e′ ma ))e′ d

m − (e n
a ∂n(e m

b )− e n
b ∂n(e m

a ))e d
m )

= ηcd(K
e
a e

n
e ∂n(e m

b ) + e n
a ∂n(K e

b e
m
e )−K e

b e
n
e ∂n(e m

a )− e n
b ∂n(K e

a e
m
e ))e d

m

+ ηcd(e
n
a ∂n(e m

b )− e n
b ∂n(e m

a ))Kd
ee

e
m

= ηcdK
e
a (e n

e ∂n(e m
b )− e n

b ∂n(e m
e ))e d

m − ηcdK e
b (e n

e ∂n(e m
a )− e n

a ∂n(e m
e ))e d

m

+ ηcde
n
a e

m
e e d

m ∂n(K e
b )− ηcde n

b e
m
e e d

m ∂n(K e
a )

+ (e n
a ∂n(e m

b )− e n
b ∂n(e m

a ))Kcde
d

m

= ηcdK
e
a C

d
eb − ηcdK e

b C
d

ea + ηcde
n
a δ

d
e∂n(K e

b )− ηcde n
b δ

d
e∂n(K e

a )

+ C d
ab Kcd

= K d
a Cdbc −K d

b Cdac +K d
c Cabd + e m

a ∂m(Kbc)− e m
b ∂m(Kac) (A.12)

Putting these back into the expression for δ∇aT ,

δ∇aT = K b
a e

m
b ∂mT +

1

4

(
K d
b Cdca −K d

c Cdba +K d
a Cbcd + e m

b ∂m(Kca)− e m
c ∂m(Kba)

+K d
a Cdcb −K d

c Cdab +K d
b Cacd + e m

a ∂m(Kcb)− e m
c ∂m(Kab)

−K d
a Cdbc +K d

b Cdac −K d
c Cabd − e m

a ∂m(Kbc) + e m
b ∂m(Kac)

)
M bcT

= K b
a e

m
b ∂mT +

1

4
K d
a (Cbcd + Cdcb − Cdbc)M bcT +

1

4
K d
b (Cdca + Cacd − Cadc)M bcT

− 1

4
K d
c (Cdba + Cabd − Cadb)M bcT − 1

2
e m
a ∂m(Kbc)M

bcT

= K b
a e

m
b ∂mT +

1

2
(K d

a ωdbc +K d
b ωadc −K d

c ωadb − e m
a ∂m(Kbc))M

bcT

=
1

2
[KbcMbc,∇a]T (A.13)

by comparing with equation A.10.

That leaves ∇a’s change under general coordinate transformations in the 2nd approach.
Let x′m = xm−ξm(x) be an infinitesimal general coordinate transformation. First, consider the
transformation of a scalar, ϕ(x), under a general coordinate transformation. By the definition
of a scalar, ϕ′(x′) = ϕ(x). Therefore,

ϕ′(x) = ϕ(x′ + ξ)

= ϕ(x+ ξ)

= ϕ(x) + ξm∂m(ϕ)|x (A.14)
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and hence δϕ = ξm∂mϕ. Meanwhile, this expression can be re-written by

[ξm∂m, ϕ]T = ξm∂m(ϕT )− ϕξm∂m(T )

= ξm∂m(ϕ)T + ξm∂m(T )ϕ− ϕξm∂m(T )

= ξm∂m(ϕ)T . (A.15)

Hence, since ∇a acts like a scalar under general coordinate transformations,

δ∇aT = [ξm∂m,∇a]T

= [e m
b ξb∂m,∇a]T

=

[
ξb∇b −

1

2
ξbωbcdM

cd,∇a

]
T

=

[
ξb∇b +

1

2
KbcMbc.∇a

]
T (A.16)

where Kbc = −ξbωbcd. Hence, the general coordinate transformation can be written in the
required form.

Either way, putting the three types of transformations together,

δ∇a =

[
ξb∇b +

1

2
KbcMbc,∇a

]
+ σ∇a −∇b(σ)Mab (A.17)

for some ξ, Kbc and σ, thereby proving the first part of the theorem.

Having established δ∇a =
[
ξb∇b + 1

2
KbcMbc,∇a

]
+ σ∇a − ∇b(σ)Mab in two different ways,

the next task is to find the conditions when δ∇a = 0.

δ∇aT =

([
ξb∇b +

1

2
KbcMbc,∇a

]
+ σ∇a −∇b(σ)Mab

)
T

= ξb∇b∇aT +
1

2
KbcMbc(∇aT )−∇a(ξ

b∇bT )− 1

2
∇a(K

bcMbcT )

+ σ∇aT −∇b(σ)MabT

= ξb[∇b,∇a]T −∇a(ξ
b)∇b(T ) +

1

2
Kbc(ηab∇cT − ηac∇bT ) +

1

2
Kbc∇a(MbcT )

− 1

2
∇a(K

bc)MbcT −
1

2
Kbc∇a(MbcT ) + σ∇aT −∇b(σ)MabT

=
1

2
Rbacdξ

bM cdT −∇a(ξ
b)∇b(T ) +K b

a ∇bT −
1

2
∇a(K

bc)MbcT

+ σ∇aT −∇b(σ)MabT

= (K b
a −∇a(ξ

b) + δbaσ)∇b(T ) +

(
1

2
R bc
da ξd − 1

2
∇a(K

bc) + δca∇b(σ)

)
Mbc(T ) (A.18)

I am looking for δ∇aT = 0 for arbitrary T , so I can freely choose T to be a scalar. In that
case, MbcT = 0. Thus,

(K b
a −∇a(ξ

b) + δbaσ)∇b(T ) = 0 (A.19)

on its own. Consequently, one must have(
1

2
R bc
da ξd − 1

2
∇a(K

bc) + δca∇b(σ)

)
Mbc(T ) = 0 (A.20)
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on its own too. Therefore, since T is still arbitrary, one must have

0 = K b
a −∇a(ξ

b) + δbaσ and (A.21)

0 =
1

2
R bc
da ξd − 1

2
∇a(K

bc) + δ[ca∇b](σ) (A.22)

with the antisymmetrisation in δ
[c
a∇b](σ) forced by the antisymmetry of Mbc. Next, since Kab

is antisymmetric, K a
a = ηabKab = 0. Hence,

0 = K a
a −∇a(ξ

a) + δaaσ

=⇒ σ =
1

4
∇aξ

a (A.23)

=⇒ Kab = ∇aξb − ηabσ = ∇aξb −
1

4
ηab∇cξ

c (A.24)

Again, since Kab is antisymmetric,

∇aξb −
1

4
ηab∇cξ

c = −∇bξa +
1

4
ηba∇cξ

c

⇐⇒ ∇aξb +∇bξa =
1

2
ηab∇cξ

c . (A.25)

Therefore,

Kab = ∇aξb −
1

4
ηab∇cξ

c =
1

2
(∇aξb −∇bξa) , (A.26)

which makes the antisymmetry clear. In summary, imposing δ∇a = 0 =⇒ σ = 1
4
∇aξ

a,
Kbc = 1

2
(∇aξb −∇bξa) and ∇aξb +∇bξa = 1

2
ηab∇cξ

c. The last of these conditions is equivalent
to saying ξa is a conformal Killing vector. All that is left to do to check the converse, i.e. check
whether choosing σ = 1

4
∇aξ

a, Kbc = 1
2
(∇aξb−∇bξa) and∇aξb+∇bξa = 1

2
ηab∇cξ

c =⇒ δ∇a = 0.
For that, all that is left to do given the above work is to check whether equation A.22 holds
for these particular choices of ξa, Kab and σ.

Rdabcξ
d −∇a(Kbc) + 2η[ca∇b](σ)

= Rdabcξ
d −∇a(Kbc) + ηca∇b(σ)− ηba∇c(σ)

= −[∇b,∇c]ξa −
1

2
∇a(∇bξc −∇cξb) +

1

4
ηca∇b∇dξ

d − 1

4
ηba∇c∇dξ

d

= −∇b∇cξa +∇c∇bξa −
1

2
∇a∇bξc +

1

2
∇a∇cξb +∇b

(
1

2
∇cξa +

1

2
∇aξc

)
−∇c

(
1

2
∇bξa +

1

2
∇aξb

)
=

1

2
(−∇b∇cξa +∇c∇bξa −∇a∇bξc +∇a∇cξb +∇b∇aξc −∇c∇aξb)

=
1

2
([∇c,∇b]ξa + [∇b,∇a]ξc + [∇a,∇c]ξb)

= −1

2
(Rdacb +Rdcba +Rdbac)ξ

d

= 0 (A.27)

Raising indices,

0 =
1

2
R bc
da ξd − 1

2
∇aK

bc + δ[ca∇b]σ , (A.28)

which is indeed equation A.22.
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Appendix B

Proof of theorem 3.11

I have to show that ∆ϕ = 0 and

D(2) = ξab∇a∇b +
2

3
∇b(ξ

ab)∇a +
1

15
∇a∇b(ξ

ab)− 3

10
Rabξ

ab (B.1)

=⇒ ∆D(2)ϕ =

(
4

15
Ca

bcd∇c(ξbd) +
4

5
∇d(Ca

bcd)ξbc
)
∇a(ϕ)

+

(
2

15
Cabcd∇a∇c(ξbd) +

2

5
∇c∇d(C

d
abc)ξ

ab +
4

15
∇d(C

d
abc)∇c(ξab)

)
ϕ , (B.2)

provided ξab is a conformal Killing tensor. Therefore,

∇cξab +∇aξbc +∇bξca =
1

3

(
ηab∇dξ

cd + ηbc∇dξ
ad + ηca∇dξ

bd

)
,

ξab = ξba and ξaa = 0 (B.3)

by imposing that ξab is symmetric and traceless and that the symmetric and traceless part of
∇cξab is zero.

∆D(2)ϕ =

(
�− 1

6
R

)(
D(2) = ξab∇a∇b +

2

3
∇b(ξ

ab)∇a +
1

15
∇a∇b(ξ

ab)− 3

10
Rabξ

ab

)
ϕ (B.4)

I will now expand this term by term and use ∆ϕ = 0 and the conformal Killing conditions,
equation B.3, to reduce the number of derivatives on ϕ.

�(ξab∇a∇bϕ) = �(ξab)∇a∇bϕ+ 2∇c(ξab)∇c∇a∇b(ϕ) + ξab�∇a∇bϕ (B.5)

I will move the � to the front in the last term. Expanding commutators in the standard way,

[�,∇a∇b] = ∇c∇a[∇c,∇b] +∇c[∇c,∇a]∇b +∇a[∇c,∇b]∇c + [∇c,∇a]∇b∇c

=⇒ ξab�∇a∇bϕ = ξab∇a∇b�ϕ+ ξab[�,∇a∇b]ϕ

= ξab(∇a∇b(Rϕ/6) +∇c∇a[∇c,∇b]ϕ+∇c[∇c,∇a]∇bϕ

+∇a[∇c,∇b]∇cϕ+ [∇c,∇a]∇b∇cϕ) . (B.6)

[∇c,∇b]ϕ = 0 as ϕ is a scalar, [∇c,∇a]∇bϕ = Rcabd∇dϕ, [∇c,∇b]∇cϕ = R c
cb d∇dϕ = Rbc∇cϕ

and [∇c,∇a]∇b∇cϕ = Rcabd∇d∇cϕ+R c
ca d∇b∇dϕ = Rcabd∇d∇cϕ+Rac∇b∇cϕ. Thus,

ξab�∇a∇bϕ =
1

6
ξab∇a∇b(Rϕ) + ξab∇c(Rcabd∇dϕ) + ξab∇a(Rbc∇cϕ)

+ ξabRcabd∇d∇cϕ+ ξabRac∇b∇cϕ

=
1

6
ξab∇a∇b(Rϕ) + 2ξabRcabd∇c∇dϕ+ 2ξabRbc∇a∇cϕ

+ ξab∇c(Rcabd)∇dϕ+ ξab∇a(Rbc)∇cϕ . (B.7)

60



The next term to simplify is ∇c(ξab)∇c∇a∇b(ϕ). Using the conformal Killing conditions,
equation B.3, and some of the previously calculated commutators,

∇c(ξab)∇c∇a∇b(ϕ)

=
1

3
∇c(ξab)(∇c∇a∇b +∇a∇c∇b +∇b∇c∇a + [∇c,∇a]∇b + [∇c,∇b]∇a)ϕ

=
1

3
(∇c(ξab) +∇a(ξbc) +∇b(ξca))∇c∇a∇b(ϕ)

+
1

3
∇c(ξab)([∇c,∇a]∇bϕ+ [∇c,∇b]∇aϕ)

=
1

3
(∇c(ξab) +∇a(ξbc) +∇b(ξca))∇c∇a∇b(ϕ) +

2

3
∇c(ξab)[∇c,∇a]∇bϕ

=
1

9
(ηab∇d(ξ

cd) + ηbc∇d(ξ
ad) + ηca∇d(ξ

bd))∇c∇a∇b(ϕ) +
2

3
∇c(ξab)[∇c,∇a]∇bϕ

=
1

9
∇a(ξ

ab)∇b�ϕ+
1

9
∇b(ξ

ab)∇c∇a∇cϕ+
1

9
∇b(ξ

ab)�∇aϕ+
2

3
∇c(ξab)Rcabd∇dϕ

=
1

3
∇a(ξ

ab)∇b�ϕ+
1

9
∇a(ξ

ab)[∇c,∇b]∇cϕ+
1

9
∇a(ξ

ab)[�,∇b]ϕ+
2

3
∇c(ξab)Rcabd∇dϕ

=
1

18
∇a(ξ

ab)∇b(Rϕ) +
2

9
∇a(ξ

ab)[∇c,∇b]∇cϕ+
2

3
∇c(ξab)Rcabd∇dϕ

=
1

18
∇a(ξ

ab)∇b(Rϕ) +
2

9
∇a(ξ

ab)Rbc∇cϕ+
2

3
∇c(ξab)Rcabd∇dϕ . (B.8)

The only other term in ∆D(2)ϕ that can lead to more than two derivatives on ϕ is

�(∇b(ξ
ab)∇aϕ)

= �∇b(ξ
ab)∇a(ϕ) + 2∇c∇b(ξ

ab)∇c∇a(ϕ) +∇b(ξ
ab)�∇a(ϕ)

= �∇b(ξ
ab)∇a(ϕ) + 2∇c∇b(ξ

ab)∇c∇a(ϕ) +∇b(ξ
ab)∇a�(ϕ) +∇b(ξ

ab)[�,∇a]ϕ

= �∇b(ξ
ab)∇a(ϕ) + 2∇c∇b(ξ

ab)∇c∇a(ϕ) +
1

6
∇b(ξ

ab)∇a(Rϕ) +∇b(ξ
ab)Rac∇cϕ . (B.9)

No commutators are required for the remaining terms in ∆D(2)ϕ. Hence, substituting the
previous page of expansions into equation B.4 gives

∆D(2)ϕ = �(ξab)∇a∇bϕ+
1

9
∇a(ξ

ab)∇b(Rϕ) +
4

9
∇a(ξ

ab)Rbc∇cϕ+
4

3
∇c(ξab)Rcabd∇dϕ

+
1

6
ξab∇a∇b(Rϕ) + 2ξabRcabd∇c∇dϕ+ 2ξabRbc∇a∇cϕ+ ξab∇c(Rcabd)∇dϕ

+ ξab∇a(Rbc)∇cϕ+
2

3
�∇b(ξ

ab)∇a(ϕ) +
4

3
∇c∇b(ξ

ab)∇c∇a(ϕ) +
1

9
∇b(ξ

ab)∇a(Rϕ)

+
2

3
∇b(ξ

ab)Rac∇cϕ+
1

15
�∇a∇b(ξ

ab)ϕ+
2

15
∇c∇a∇b(ξ

ab)∇cϕ+
1

15
∇a∇b(ξ

ab)�(ϕ)

− 3

10
�(Rabξ

ab)ϕ− 3

5
∇c(Rabξ

ab)∇c(ϕ)− 3

10
Rabξ

ab�ϕ− 1

6
Rξab∇a∇bϕ

− 1

9
R∇b(ξ

ab)∇a(ϕ)− 1

90
R∇a∇b(ξ

ab)ϕ+
1

20
RRabξ

abϕ . (B.10)
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Then, using �ϕ = Rϕ/6, expanding some ∇(·) by the product rule and packaging together all
terms with equal number of derivatives on ϕ,

∆D(2)ϕ =

{
�(ξab) + 2ξcdRa b

cd + 2ξacR b
c +

4

3
∇b∇c(ξ

ac)

}
∇a∇b(ϕ)

+

{
4

9
∇c(ξ

cb)R a
b +

4

3
∇c(ξdb)R a

cdb +
1

3
ξab∇b(R) + ξdb∇c(R a

cdb ) + ξcb∇c(R
a
b )

+
2

3
�∇b(ξ

ab) +
1

9
R∇b(ξ

ab) +
2

3
∇b(ξ

cb)R a
c +

2

15
∇a∇c∇b(ξ

cb)

− 3

5
∇a(Rbcξ

bc)

}
∇a(ϕ)

+

{
1

9
∇a(ξ

ab)∇b(R) +
1

6
ξab∇a∇b(R) +

1

9
∇b(ξ

ab)∇a(R) +
1

15
�∇a∇b(ξ

ab)

− 3

10
�(Rabξ

ab)

}
ϕ . (B.11)

Then, collating some terms,

∆D(2)ϕ =

{
�(ξab) + 2ξcdRa b

cd + 2ξacR b
c +

4

3
∇b∇c(ξ

ac)

}
∇a∇b(ϕ)

+

{
10

9
∇c(ξ

cb)R a
b +

4

3
∇c(ξdb)R a

cdb +
1

3
ξab∇b(R) + ξdb∇c(R a

cdb ) + ξcb∇c(R
a
b )

+
2

3
�∇b(ξ

ab) +
1

9
R∇b(ξ

ab) +
2

15
∇a∇c∇b(ξ

cb)− 3

5
∇a(Rbcξ

bc)

}
∇a(ϕ)

+

{
2

9
∇a(ξ

ab)∇b(R) +
1

6
ξab∇a∇b(R) +

1

15
�∇a∇b(ξ

ab)− 3

10
�(Rabξ

ab)

}
ϕ . (B.12)

Let {i} denote the coefficient of the term with i derivatives of ϕ. On each {i}, my strategy will
be to use commutators and the conformal Killing equation to first cancel out all terms without
curvature factors.

I will start with {2}. The conformal Killing condition is

∇cξab +∇aξbc +∇bξca =
1

3

(
ηab∇dξ

cd + ηbc∇dξ
ad + ηca∇dξ

bd

)
(B.13)

Therefore,

�ξab +∇c∇aξbc +∇c∇bξca =
1

3

(
ηab∇c∇dξ

cd +∇b∇dξ
ad +∇a∇dξ

bd

)
⇐⇒ (�ξab + 2∇c∇bξac)∇a∇b(ϕ) =

1

3
∇a∇b(ξ

ab)�(ϕ) +
2

3
∇b∇c(ξ

ac)∇a∇b(ϕ) (B.14)

Re-arranging,

(�ξab + 2∇b∇cξ
ac + 2[∇c,∇b]ξac)∇a∇b(ϕ)

=
1

18
R∇a∇b(ξ

ab)ϕ+
2

3
∇b∇c(ξ

ac)∇a∇b(ϕ) , (B.15)

and thus

�(ξab)∇a∇b(ϕ) = −4

3
∇b∇c(ξ

ac)∇a∇b(ϕ)− 2[∇c,∇b](ξac)∇a∇b(ϕ) +
1

18
R∇a∇b(ξ

ab)ϕ .

(B.16)
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[∇c,∇b]ξac = R ba
c dξ

dc +R bc
c dξ

ad

= Ra b
dc ξ

cd + ξacR b
c (B.17)

=⇒ �(ξab)∇a∇b(ϕ) = −4

3
∇b∇c(ξ

ac)∇a∇b(ϕ)− 2(Ra b
dc ξ

cd + ξacR b
c )∇a∇b(ϕ)

+
1

18
R∇a∇b(ξ

ab)ϕ (B.18)

Hence, {2}∇a∇b(ϕ) = 1
18
R∇a∇b(ξ

ab)ϕ and {2} can be absorbed into {0}. That leaves

∆D(2)ϕ =

{
10

9
∇c(ξ

cb)R a
b +

4

3
∇c(ξdb)R a

cdb +
1

3
ξab∇b(R) + ξdb∇c(R a

cdb ) + ξcb∇c(R
a
b )

+
2

3
�∇b(ξ

ab) +
1

9
R∇b(ξ

ab) +
2

15
∇a∇c∇b(ξ

cb)− 3

5
∇a(Rbcξ

bc)

}
∇a(ϕ)

+

{
2

9
∇a(ξ

ab)∇b(R) +
1

6
ξab∇a∇b(R) +

1

15
�∇a∇b(ξ

ab)− 3

10
�(Rabξ

ab)

+
1

18
R∇a∇b(ξ

ab)

}
ϕ . (B.19)

Like before, in simplifying {1} I will try to cancel �∇b(ξ
ab) with ∇a∇c∇b(ξ

cb) at the expense
of curvature terms.

�∇bξ
ab = ∇b�ξ

ab + [�,∇b]ξ
ab (B.20)

[�,∇b]ξ
ab = [∇c∇c,∇b]ξ

ab

= ∇c[∇c,∇b]ξ
ab + [∇c,∇b]∇cξab

= ∇c(R a
cb dξ

db +R b
cb dξ

ad) +R c
cb d∇dξab +R a

cb d∇cξdb +R b
cb d∇cξad

= ∇c(Ra
dcbξ

db −Rcdξ
ad) +Rbd∇dξab +Ra

dcb∇cξdb −Rcd∇cξad

= ∇c(Ra
dcbξ

db −Rcdξ
ad) +Ra

dcb∇cξdb

= 2Ra
dcb∇cξdb + ξdb∇c(Ra

dcb)−∇c(Rcd)ξ
ad −Rcd∇c(ξad)

= 2Ra
dcb∇cξdb + ξdb∇c(Ra

dcb)−
1

2
∇b(R)ξab −Rcb∇c(ξab) (B.21)

Then, by equation B.14,

∇b�ξ
ab = ∇b

(
−∇c∇aξbc −∇c∇bξca +

1

3

(
ηab∇c∇dξ

cd +∇b∇dξ
ad +∇a∇dξ

bd

))
= −∇b∇c∇aξbc −∇b∇c∇bξca +

1

3
∇a∇c∇dξ

cd +
1

3
�∇bξ

ab +
1

3
∇b∇a∇dξ

bd

= −1

3
∇a∇c∇bξ

cb − [∇c∇b,∇a]ξcb +
1

3
[∇c,∇a]∇bξ

cb − 2

3
�∇bξ

ab

−∇c[∇b,∇c]ξab

= −1

3
∇a∇c∇bξ

cb −∇c[∇b,∇a]ξcb − 2

3
[∇c,∇a]∇bξ

cb − 2

3
�∇bξ

ab

−∇c[∇b,∇c]ξab . (B.22)

∇c[∇b,∇a]ξcb = ∇c(R
ac
b dξ

db +R ab
b dξ

cd)

= −∇c(Ra
bcdξ

db) +∇c(R
a
b ξ

cb)

= −∇c(Ra
bcd)ξ

db −Ra
bcd∇c(ξdb) +∇c(R

a
b )ξcb +R a

b ∇c(ξ
cb) (B.23)

[∇c,∇a]∇bξ
cb = R ac

c d∇bξ
db = R a

b ∇cξ
bc (B.24)
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∇c[∇b,∇c]ξab = ∇c(R
ca
b dξ

db +R cb
b dξ

ad)

= ∇c(Ra
bdcξ

db) +∇c(R
c
bξ
ab)

= −∇c(Ra
bcd)ξ

db −Ra
bcd∇cξdb +

1

2
∇b(R)ξab +Rcb∇cξab (B.25)

Substituting back and re-arranging along the way,

∇b�ξ
ab = −1

3
∇a∇c∇bξ

cb − 2

3
�∇bξ

ab +∇c(Ra
bcd)ξ

db +Ra
bcd∇c(ξdb)−∇c(R

a
b )ξcb

−R a
b ∇c(ξ

cb)− 2

3
R a
b ∇cξ

bc +∇c(Ra
bcd)ξ

db +Ra
bcd∇cξdb − 1

2
∇b(R)ξab

−Rcb∇cξab

= −1

3
∇a∇c∇bξ

cb − 2

3
�∇bξ

ab + 2∇c(Ra
bcd)ξ

db + 2Ra
bcd∇c(ξdb)−∇c(R

a
b )ξcb

− 5

3
R a
b ∇cξ

bc − 1

2
∇b(R)ξab −Rcb∇cξab (B.26)

=⇒ �∇bξ
ab = ∇b�ξ

ab + [�,∇b]ξ
ab

= −1

3
∇a∇c∇bξ

cb − 2

3
�∇bξ

ab + 2∇c(Ra
bcd)ξ

db + 2Ra
bcd∇c(ξdb)−∇c(R

a
b )ξcb

− 5

3
R a
b ∇cξ

bc − 1

2
∇b(R)ξab −Rcb∇cξab + 2Ra

dcb∇cξdb + ξdb∇c(Ra
dcb)

− 1

2
∇b(R)ξab −Rcb∇c(ξab) (B.27)

5

3
�∇bξ

ab = −1

3
∇a∇c∇bξ

cb + 3∇c(Ra
bcd)ξ

db + 4Ra
bcd∇c(ξdb)−∇c(R

a
b )ξcb

− 5

3
R a
b ∇cξ

bc −∇b(R)ξab − 2Rcb∇cξab (B.28)

2

3
�∇bξ

ab = − 2

15
∇a∇c∇bξ

cb +
6

5
∇c(Ra

bcd)ξ
db +

8

5
Ra

bcd∇c(ξdb)− 2

5
∇c(R

a
b )ξcb

− 2

3
R a
b ∇cξ

bc − 2

5
∇b(R)ξab − 4

5
Rcb∇cξab . (B.29)

With this equation, {1} can be re-written as

{1} =
10

9
∇c(ξ

cb)R a
b +

4

3
∇c(ξdb)R a

cdb +
1

3
ξab∇b(R) + ξdb∇c(R a

cdb ) + ξcb∇c(R
a
b ) +

1

9
R∇bξ

ab

− 3

5
∇a(Rcbξ

cb) +
6

5
∇c(Ra

bcd)ξ
bd +

8

5
Ra

bcd∇cξbd − 2

5
∇c(R

a
b )ξbc − 2

3
R a
b ∇c(ξ

bc)

− 2

5
∇b(R)ξab − 4

5
Rcb∇cξab

=
4

9
R a
b ∇c(ξ

cb) +
4

15
Ra

bcd∇c(ξbd)− 1

15
∇b(R)ξab +

1

5
∇c(Ra

bcd)ξ
bd +

3

5
∇c(R

a
b )ξbc

+
1

9
R∇b(ξ

ab)− 3

5
∇a(Rcbξ

cb)− 4

5
Rcb∇cξab . (B.30)

Then, via ∇c(Ra
bcd) = ∇c(R a

cd b) = −∇a(R c
cdb )−∇b(R

ca
cd ) = ∇a(Rbd)−∇b(R

a
d ),

{1} =
4

9
R a
b ∇c(ξ

cb) +
4

15
Ra

bcd∇c(ξbd)− 1

15
∇b(R)ξab +

2

5
∇c(R

a
b )ξbc +

1

9
R∇b(ξ

ab)

− 2

5
∇a(Rcb)ξ

cb − 3

5
Rbc∇a(ξbc)− 4

5
Rcb∇c(ξab) . (B.31)

Having removed all “curvature-free” terms from {1}, I will leave its analysis here for now and
try manipulate {0} in the same way.
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From equation B.19, in {0} the only term without a curvature factor is �∇a∇bξ
ab.

�∇a∇bξ
ab = ∇a∇b�ξ

ab + [�,∇a∇b]ξ
ab (B.32)

[�,∇a∇b]ξ
ab = ∇c[∇c,∇a∇b]ξ

ab + [∇c,∇a∇b]∇cξab

= ∇c∇a[∇c,∇b]ξ
ab +∇c[∇c,∇a]∇bξ

ab +∇a[∇c,∇b]∇cξab

+ [∇c,∇a]∇b∇cξab (B.33)

Again, using the conformal Killing equation,

∇a∇b�ξ
ab = ∇a∇b

(
−∇c∇aξbc −∇c∇bξca

+
1

3

(
ηab∇c∇dξ

cd + ηbc∇c∇dξ
ad + ηca∇c∇dξ

bd

))
= −∇a∇b∇c∇aξbc −∇a∇b∇c∇bξca +

1

3
�∇a∇bξ

ab +
1

3
∇a�∇bξ

ab

+
1

3
∇a∇b∇a∇cξ

bc . (B.34)

∇a∇b∇c∇aξbc = �∇a∇bξ
ab +∇a[∇b∇c,∇a]ξbc

= �∇a∇bξ
ab +∇a∇b[∇c,∇a]ξbc +∇a[∇b,∇a]∇cξ

bc (B.35)

∇a∇b∇c∇bξca = ∇b∇a∇c∇bξca + [∇a,∇b]∇c∇bξca

= �∇a∇bξ
ab +∇b[∇a∇c,∇b]ξca + [∇a,∇b]∇c∇bξca

= �∇a∇bξ
ab +∇b∇a[∇c,∇b]ξca +∇b[∇a,∇b]∇cξ

ca + [∇a,∇b]∇c∇bξca (B.36)

∇a�∇bξ
ab = �∇a∇bξ

ab + [∇a,�]∇bξ
ab

= �∇a∇bξ
ab +∇c[∇a,∇c]∇bξ

ab + [∇a,∇c]∇c∇bξ
ab (B.37)

∇a∇b∇a∇cξ
bc = �∇a∇bξ

ab +∇a[∇b,∇a]∇cξ
bc (B.38)

Substituting back,

∇a∇b�ξ
ab = −�∇a∇bξ

ab −∇a∇b[∇c,∇a]ξbc −∇a[∇b,∇a]∇cξ
bc −∇b∇a[∇c,∇b]ξca

−∇b[∇a,∇b]∇cξ
ca − [∇a,∇b]∇c∇bξca +

1

3
∇c[∇a,∇c]∇bξ

ab

+
1

3
[∇a,∇c]∇c∇bξ

ab +
1

3
∇a[∇b,∇a]∇cξ

bc

= −�∇a∇bξ
ab − 2∇a∇b[∇c,∇a]ξbc − 4

3
∇c[∇b,∇c]∇aξ

ab − [∇a,∇b]∇c∇bξca

+
1

3
[∇a,∇c]∇c∇bξ

ab . (B.39)

Therefore,

�∇a∇bξ
ab = ∇a∇b�ξ

ab + [�,∇a∇b]ξ
ab

= −�∇a∇bξ
ab − 2∇a∇b[∇c,∇a]ξbc − 4

3
∇c[∇b,∇c]∇aξ

ab − [∇a,∇b]∇c∇bξca

+
1

3
[∇a,∇c]∇c∇bξ

ab +∇c∇a[∇c,∇b]ξ
ab +∇c[∇c,∇a]∇bξ

ab

+∇a[∇c,∇b]∇cξab + [∇c,∇a]∇b∇cξab

= −3

2
∇c∇b[∇a,∇c]ξab − 7

6
∇c[∇b,∇c]∇aξ

ab + [∇c,∇a]∇b∇cξab

+
1

6
[∇a,∇c]∇c∇bξ

ab +
1

2
∇a[∇c,∇b]∇cξab . (B.40)
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It is now time to evaluate each of these commutators1.

∇c∇b[∇a,∇c]ξab = ∇c∇b(R
ca
a dξ

db +R cb
a dξ

ad)

= ∇a∇c(R
a
b ξ

bc) +∇c∇d(Racdbξ
ad) (B.41)

∇c[∇b,∇c]∇aξ
ab = ∇c(R b

bc d∇aξ
ad)

= ∇c(Rcb∇aξ
ab) (B.42)

[∇c,∇a]∇b∇cξab = R c
ca d∇b∇dξab +R a

ca d∇b∇cξdb

= Rad∇b∇dξab −Rcd∇b∇cξdb

= 0 (B.43)

[∇a,∇c]∇c∇bξ
ab = R c

ac d∇d∇bξ
abR a

ac d∇c∇bξ
db

= −Rad∇d∇bξ
ab +Rcd∇c∇bξ

db

= 0 (B.44)

∇a[∇c,∇b]∇cξab = ∇a(R
c

cb d∇dξab +R a
cb d∇cξdb +R b

cb d∇cξad)

= ∇a(Rbd∇dξab +Ra
dcb∇cξdb −Rcd∇cξad)

= ∇a(R
a
dcb∇cξdb) (B.45)

Altogether,

�∇a∇bξ
ab = −3

2
∇a∇c(R

a
b ξ

bc)− 3

2
∇c∇d(Racdbξ

ad)− 7

6
∇c(Rcb∇aξ

ab)

+
1

2
∇a(R

a
dcb∇cξdb) . (B.46)

Putting this expression back into equation B.19,

{0} =
2

9
∇a(ξ

ab)∇b(R) +
1

6
ξab∇a∇b(R)− 3

10
�(Rabξ

ab) +
1

18
R∇a∇b(ξ

ab)− 1

10
∇a∇c(R

a
b ξ

bc)

− 1

10
∇c∇d(Racdbξ

ab)− 7

90
∇c(Rcb∇aξ

ab) +
1

30
∇a(R

a
dcb∇cξdb) . (B.47)

To progress further, I will need to expand each of the terms coming from the commutators
above.

∇a∇c(R
a
b ξ

bc) = ∇a(∇c(R
a
b )ξbc +R a

b ∇c(ξ
bc))

= ∇a∇c(R
a
b )ξbc +R a

b ∇a∇c(ξ
bc) +∇c(Rab)∇a(ξbc) +

1

2
∇b(R)∇a(ξ

ab) (B.48)

∇dRacdb = ∇dRdbac

= −∇aR
d

dbc −∇cR
d

db a

= ∇aRbc −∇cRba (B.49)

∇c(Racdb) = −∇d(R
c

acb )−∇b(R
c

ac d) = −∇d(Rab) +∇b(Rad) (B.50)

=⇒ ∇c∇d(Racdbξ
ab) = ∇c(∇d(Racdb)ξ

ab +Racdb∇d(ξab))

= ∇c(∇a(Rbc)ξ
ab −∇c(Rab)ξ

ab +Racdb∇d(ξab))

= ∇c∇a(Rbc)ξ
ab +∇a(Rbc)∇c(ξab)−�(Rab)ξ

ab −∇c(Rab)∇c(ξab)

+∇c(Racdb)∇d(ξab) +Racdb∇c∇d(ξab)

= Racdb∇c∇d(ξab) +∇c∇a(Rbc)ξ
ab −�(Rab)ξ

ab + 2∇a(Rbc)∇c(ξab)

− 2∇c(Rab)∇c(ξab) (B.51)

1Technically, the curvature-free terms are already gone since all commutators generate Riemann tensors and
their descendants.
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∇c(Rcb∇aξ
ab) =

1

2
∇b(R)∇aξ

ab +Rcb∇c∇aξ
ab (B.52)

∇a(R
a
dcb∇cξdb) = ∇a(R

a
dcb)∇cξdb +Ra

dcb∇a∇cξdb

= −∇c(R
a
dba)∇cξbd −∇b(R

a
dac)∇cξbd +Rabcd∇a∇cξbd

= ∇a(Rbc)∇aξbc −∇a(Rbc)∇cξab +Rabcd∇a∇cξbd (B.53)

With these expressions,

{0} =
2

9
∇a(ξ

ab)∇b(R) +
1

6
ξab∇a∇b(R)− 3

10
�(Rabξ

ab) +
1

18
R∇a∇b(ξ

ab)− 1

10
∇a∇c(R

a
b )ξbc

− 1

10
R a
b ∇a∇c(ξ

bc)− 1

10
∇c(Rab)∇a(ξbc)− 1

20
∇b(R)∇a(ξ

ab)

− 1

10
Racdb∇c∇d(ξab)− 1

10
∇c∇a(Rbc)ξ

ab +
1

10
�(Rab)ξ

ab − 1

5
∇a(Rbc)∇c(ξab)

+
1

5
∇c(Rab)∇c(ξab)− 7

180
∇b(R)∇a(ξ

ab)− 7

90
Rcb∇c∇aξ

ab +
1

30
∇a(Rbc)∇aξbc

− 1

30
∇a(Rbc)∇cξab +

1

30
Rabcd∇a∇cξbd

=
2

15
∇a(ξ

ab)∇b(R) +
1

6
ξab∇a∇b(R)− 1

5
�(Rab)ξ

ab − 11

30
∇c(Rab)∇c(ξab)− 3

10
Rab�ξ

ab

+
1

18
R∇a∇b(ξ

ab)− 1

5
∇c∇a(Rbc)ξ

ab − 8

45
Rcb∇c∇a(ξ

ab)− 1

3
∇a(Rbc)∇c(ξab)

+
2

15
Rabcd∇a∇cξbd . (B.54)

Hence, so far I have

∆D(2)ϕ =

{
4

9
R a
b ∇c(ξ

cb) +
4

15
Ra

bcd∇c(ξbd)− 1

15
∇b(R)ξab +

2

5
∇c(R

a
b )ξbc +

1

9
R∇b(ξ

ab)

− 2

5
∇a(Rcb)ξ

cb − 3

5
Rbc∇a(ξbc)− 4

5
Rcb∇c(ξab)

}
∇a(ϕ)

+

{
2

15
∇a(ξ

ab)∇b(R) +
1

6
ξab∇a∇b(R)− 1

5
�(Rab)ξ

ab − 11

30
∇c(Rab)∇c(ξab)

− 3

10
Rab�ξ

ab +
1

18
R∇a∇b(ξ

ab)− 1

5
∇c∇a(Rbc)ξ

ab − 8

45
Rcb∇c∇a(ξ

ab)

− 1

3
∇a(Rbc)∇c(ξab) +

2

15
Rabcd∇a∇cξbd

}
ϕ . (B.55)

It is not possible to use the conformal Killing equation on terms contracted to the Riemann
tensor because the conformal Killing equation requires symmetrising indices; the Riemann
tensor’s antisymmetries then give zero. To work around this issue, I will re-write all Riemann
tensors in terms of the Weyl tensor, i.e. via

Rabcd = Cabcd +
1

2
ηacRbd +

1

2
ηbdRac −

1

2
ηadRbc −

1

2
ηbcRad +

1

6
Rηbcηad −

1

6
Rηacηbd . (B.56)
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In {1} the only term with a Riemann tensor is 4
15
Ra

bcd∇c(ξbd).

Ra
bcd∇cξbd = Ca

bcd∇cξbd +
1

2
δacRbd∇cξbd +

1

2
ηbdR

a
c∇cξbd − 1

2
δadRbc∇cξbd − 1

2
ηbcR

a
d∇cξbd

+
1

6
Rηbcδ

a
d∇cξbd − 1

6
Rδacηbd∇cξbd

= Ca
bcd∇cξbd +

1

2
Rbd∇aξbd +

1

2
Ra

c∇cξbb −
1

2
Rbc∇cξba − 1

2
Ra

d∇bξ
bd

+
1

6
R∇bξ

ba − 1

6
R∇aξbb

= Ca
bcd∇cξbd +

1

2
Rbc∇aξbc − 1

2
Rbc∇cξab − 1

2
R a
b ∇cξ

bc +
1

6
R∇bξ

ab (B.57)

Substituting this back into {1} gives

{1} =
14

45
R a
b ∇cξ

bc − 1

15
∇b(R)ξab +

2

5
∇c(R

a
b )ξbc +

7

45
R∇bξ

ab − 2

5
∇a(Rbc)ξ

bc − 7

15
Rbc∇aξbc

− 14

45
Rbc∇cξab +

4

15
Ca

bcd∇cξbd . (B.58)

Then, by the conformal Killing equation,

Rbc∇aξbc = Rbc

(
−∇bξca −∇cξab +

1

3

(
ηab∇dξ

cd + ηbc∇dξ
ad + ηca∇dξ

bd

))
= −2Rbc∇cξab +

2

3
R a
b ∇cξ

bc +
1

3
R∇bξ

ab (B.59)

Therefore,

{1} = − 1

15
∇b(R)ξab +

2

5
∇c(R

a
b )ξbc − 2

5
∇a(Rbc)ξ

bc +
4

15
Ca

bcd∇cξbd . (B.60)

Next, the Bianchi identity in terms of the Weyl tensor is

0 = ∇aR
d
ebc +∇bR

d
eca +∇cR

d
eab

= ∇aC
d
ebc +∇bC

d
eca +∇cC

d
eab

+∇a

(
1

2
δdbRec +

1

2
ηecR

d
b −

1

2
δdcReb −

1

2
ηebR

d
c +

1

6
Rηebδ

d
c −

1

6
Rδdbηec

)
+∇b

(
1

2
δdcRea +

1

2
ηeaR

d
c −

1

2
δdaRec −

1

2
ηecR

d
a +

1

6
Rηecδ

d
a −

1

6
Rδdcηea

)
+∇c

(
1

2
δdaReb +

1

2
ηebR

d
a −

1

2
δdbRea −

1

2
ηeaR

d
b +

1

6
Rηeaδ

d
b −

1

6
Rδdaηeb

)
(B.61)

=⇒ 0 = ∇aC
a
ebc +∇bC

a
eca +∇cC

a
eab

+∇a

(
1

2
δabRec +

1

2
ηecR

a
b −

1

2
δacReb −

1

2
ηebR

a
c +

1

6
Rηebδ

a
c −

1

6
Rδabηec

)
+∇b

(
1

2
δacRea +

1

2
ηeaR

a
c −

1

2
δaaRec −

1

2
ηecR

a
a +

1

6
Rηecδ

a
a −

1

6
Rδacηea

)
+∇c

(
1

2
δaaReb +

1

2
ηebR

a
a −

1

2
δabRea −

1

2
ηeaR

a
b +

1

6
Rηeaδ

a
b −

1

6
Rδaaηeb

)
= ∇aC

a
ebc −

1

2
∇bRec +

1

12
ηec∇bR +

1

2
∇cReb −

1

12
ηeb∇cR (B.62)

⇐⇒ 0 = ∇bRac +
1

6
ηab∇cR−∇cRab −

1

6
ηac∇bR− 2∇dC

d
abc . (B.63)
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Then applying the last equation to {1},

0 = −2

5

(
∇a(Rbc) +

1

6
δab∇c(R)−∇c(R

a
b )− 1

6
ηbc∇a(R)− 2∇d(C

d a
b c)

)
ξbc

= −2

5
∇a(Rbc)ξ

bc − 1

15
∇b(R)ξab +

2

5
∇c(R

a
b )ξbc − 4

5
∇d(Ca

bcd)ξbc . (B.64)

That finally results in

{1} =
4

15
Ca

bcd∇cξbd +
4

5
∇d(Ca

bcd)ξbc , (B.65)

which finishes the required manipulation for {1}.

Next I have to deal with {0} where the only term with a Riemann tensor in it is 2
15
Rabcd∇a∇cξbd.

Writing it in terms of the Weyl tensor,

Rabcd∇a∇cξbd =

(
Cabcd +

1

2
ηacRbd +

1

2
ηbdRac −

1

2
ηadRbc −

1

2
ηbcRad

+
1

6
Rηbcηad −

1

6
Rηacηbd

)
∇a∇cξbd

= Cabcd∇a∇cξbd +
1

2
Rbd�ξ

bd +
1

2
Rac∇a∇cξbb −

1

2
Rbc∇d∇cξbd − 1

2
Rad∇a∇bξ

bd

+
1

6
R∇d∇bξ

bd − 1

6
R�ξbb

= Cabcd∇a∇cξbd +
1

2
Rab�ξ

ab − 1

2
Rbc∇a∇cξab − 1

2
Rbc∇c∇aξ

ab +
1

6
R∇a∇bξ

ab .

(B.66)

Substituting this back into {0},

{0} =
2

15
∇b(R)∇aξ

ab +
1

6
ξab∇a∇b(R)− 1

5
�(Rab)ξ

ab − 11

30
∇c(Rab)∇cξab − 7

30
Rab�ξ

ab

+
7

90
R∇a∇bξ

ab − 1

5
∇c∇a(Rbc)ξ

ab − 11

45
Rbc∇c∇aξ

ab − 1

3
∇a(Rbc)∇cξab

− 1

15
Rbc∇a∇cξab +

2

15
Cabcd∇a∇cξbd (B.67)

From equation B.63,

0 = ∇b

(
∇b(Rac) +

1

6
ηab∇c(R)−∇c(Rab)−

1

6
ηac∇b(R)− 2∇d(C

d
abc)

)
ξac

= �(Rab)ξ
ab +

1

6
∇a∇b(R)ξab −∇c∇a(Rbc)ξ

ab + 2∇c∇d(C
d
abc)ξ

ab (B.68)

Therefore,

{0} =
2

15
∇b(R)∇aξ

ab − 6

5
�(Rab)ξ

ab − 11

30
∇c(Rab)∇cξab − 7

30
Rab�ξ

ab

+
7

90
R∇a∇bξ

ab +
4

5
∇c∇a(Rbc)ξ

ab − 11

45
Rbc∇c∇aξ

ab − 1

3
∇a(Rbc)∇cξab

− 1

15
Rbc∇a∇cξab +

2

15
Cabcd∇a∇cξbd − 2∇c∇d(C

d
abc)ξ

ab . (B.69)
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Rab�ξ
ab = Rab∇c

(
−∇aξbc −∇bξca +

1

3

(
ηab∇dξ

cd + ηbc∇dξ
ad + ηca∇dξ

bd

))
= −2Rbc∇a∇cξab +

1

3
R∇a∇bξ

ab +
2

3
Rbc∇c∇aξ

ab (B.70)

=⇒ {0} =
2

15
∇b(R)∇aξ

ab − 6

5
�(Rab)ξ

ab − 11

30
∇c(Rab)∇cξab +

4

5
∇c∇a(Rbc)ξ

ab

− 2

5
Rbc∇c∇aξ

ab − 1

3
∇a(Rbc)∇cξab +

2

5
Rbc∇a∇cξab +

2

15
Cabcd∇a∇cξbd

− 2∇c∇d(C
d
abc)ξ

ab (B.71)

∇c(Rab)∇c(ξab) = ∇c(Rab)

(
−∇a(ξbc)−∇b(ξca)

+
1

3

(
ηab∇d(ξ

cd) + ηbc∇d(ξ
ad) + ηca∇d(ξ

bd)

))
= −2∇c(Rab)∇a(ξbc) +

1

3
∇c(R)∇d(ξ

cd) +
1

3
∇b(Rab)∇d(ξ

ad)

+
1

3
∇a(Rab)∇d(ξ

bd)

= −2∇c(Rab)∇a(ξbc) +
2

3
∇b(R)∇a(ξ

ab) (B.72)

Hence,

{0} = −1

9
∇b(R)∇aξ

ab − 6

5
�(Rab)ξ

ab +
4

5
∇c∇a(Rbc)ξ

ab − 2

5
Rbc∇c∇aξ

ab +
2

5
∇c(Rab)∇aξbc

+
2

5
Rbc∇a∇cξab +

2

15
Cabcd∇a∇cξbd − 2∇c∇d(C

d
abc)ξ

ab

= −1

9
∇b(R)∇aξ

ab − 6

5
�(Rab)ξ

ab +
4

5
∇c∇a(Rbc)ξ

ab +
2

5
∇c(Rab)∇aξbc

+
2

5
Rbc[∇a,∇c]ξab +

2

15
Cabcd∇a∇cξbd − 2∇c∇d(C

d
abc)ξ

ab . (B.73)

Then, from equation B.63,

0 =

(
∇b(Rac) +

1

6
ηab∇c(R)−∇c(Rab)−

1

6
ηac∇b(R)− 2∇d(C

d
abc)

)
∇b(ξac)

= ∇b(Rac)∇b(ξac) +
1

6
∇c(R)∇a(ξ

ac)−∇c(Rab)∇b(ξac)− 0− 2∇d(C
d
abc)∇b(ξac)

= ∇c(Rab)∇c(ξab) +
1

6
∇b(R)∇a(ξ

ab)−∇c(Rab)∇a(ξbc)− 2∇d(C
d
abc)∇b(ξac)

=
5

6
∇b(R)∇a(ξ

ab)− 3∇c(Rab)∇a(ξbc)− 2∇d(C
d
abc)∇b(ξac) , (B.74)

where the last line was derived using the expression for ∇c(Rab)∇c(ξab) from above. Thus,

{0} = −6

5
�(Rab)ξ

ab +
4

5
∇c∇a(Rbc)ξ

ab +
2

5
Rbc[∇a,∇c]ξab

+
2

15
Cabcd∇a∇cξbd − 2∇c∇d(C

d
abc)ξ

ab − 4

15
∇d(C

d
abc)∇b(ξac) (B.75)

Rbc[∇a,∇c]ξab = RbcR
ca
a dξ

db +RbcR
cb
a dξ

ad

= RbcR
c
dξ
db +RbcR

cb
a dξ

ad (B.76)
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Again, I will re-write the Riemann tensor in terms of the Weyl tensor.

R cb
a dξ

ad =

(
C cb
a d +

1

2
δbaR

c
d +

1

2
δcdR

b
a −

1

2
ηadR

bc − 1

2
ηbcRad

+
1

6
Rηbcηad −

1

6
Rδbaδ

c
d

)
ξad

= C cb
a dξ

ad +
1

2
Rc

dξ
bd +

1

2
Rb

aξ
ac − 1

2
Rbcξaa −

1

2
Radξ

adηbc

+
1

6
Rηbcξaa −

1

6
Rξbc

= C cb
a dξ

ad +
1

2
Rc

dξ
bd +

1

2
Rb

dξ
cd − 1

2
ηbcRadξ

ad − 1

6
Rξbc (B.77)

Substituting that back,

Rbc[∇a,∇c]ξab = RbcR
c
dξ
db +RbcC

cb
a dξ

ad +
1

2
RbcR

c
dξ
bd +

1

2
RbcR

b
dξ
cd

− 1

2
Rbcη

bcRadξ
ad − 1

6
RbcRξ

bc

= RbcCabcdξ
ad + 2RacR

c
bξ
ab − 2

3
RRabξ

ab . (B.78)

With the benefit of hindsight, another term in equation B.75 that should be re-written is

∇c∇a(Rbc) = ∇a∇c(Rbc) + [∇c,∇a]Rbc

=
1

2
∇a∇b(R) +Rc

abdR
d
c +Rc

acdR
d
b

=
1

2
∇a∇b(R) +RcabdR

cd +RacR
c
b

=
1

2
∇a∇b(R) +RacR

c
b +

(
Ccabd +

1

2
ηcbRad +

1

2
ηadRbc −

1

2
ηcdRab

− 1

2
ηabRcd +

1

6
Rηabηcd −

1

6
Rηcbηad

)
Rcd

=
1

2
∇a∇b(R) +RacR

c
b + CcabdR

cd +
1

2
RacR

c
b +

1

2
RbcR

c
a −

1

2
RabR

− 1

2
ηabRcdR

cd +
1

6
R2ηab −

1

6
RRab

=
1

2
∇a∇b(R) +

3

2
RacR

c
b + CcabdR

cd +
1

2
RbcR

c
a −

2

3
RRab

− 1

2
ηabRcdR

cd +
1

6
R2ηab . (B.79)

Therefore,

∇c∇a(Rbc)ξ
ab =

1

2
∇a∇b(R)ξab + 2RacR

c
bξ
ab − 2

3
RRabξ

ab + CcabdR
cdξab (B.80)

Putting the previous two parts together,

4

5
∇c∇a(Rbc)ξ

ab +
2

5
Rbc[∇a,∇c]ξab

=
12

5
RacR

c
bξ
ab − 4

5
RRabξ

ab +
2

5
∇a∇b(R) +

6

5
CabcdR

bcξad (B.81)
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Then, using equations B.68, B.80 and B.81 (in that order),

0 = −6

5
�(Rab)ξ

ab − 1

5
∇a∇b(R)ξab +

6

5
∇c∇a(Rbc)−

12

5
∇c∇d(C

d
abc)ξ

ab

= −6

5
�(Rab)ξ

ab − 1

5
∇a∇b(R)ξab +

3

5
∇a∇b(R)ξab +

12

5
RacR

c
bξ
ab − 4

5
RRabξ

ab

+
6

5
CcabdR

cdξab − 12

5
∇c∇d(C

d
abc)ξ

ab

= −6

5
�(Rab)ξ

ab +
2

5
∇a∇b(R)ξab +

12

5
RacR

c
bξ
ab − 4

5
RRabξ

ab

+
6

5
CcabdR

cdξab − 12

5
∇c∇d(C

d
abc)ξ

ab

= −6

5
�(Rab)ξ

ab +
4

5
∇c∇a(Rbc)ξ

ab +
2

5
Rbc[∇a,∇c]ξab − 12

5
∇c∇d(C

d
abc)ξ

ab . (B.82)

Substituting this expression back into equation B.75,

{0} =
2

15
Cabcd∇a∇cξbd +

2

5
∇c∇d(C

d
abc)ξ

ab − 4

15
∇d(C

d
abc)∇b(ξac) . (B.83)

Using the last equation together with equation B.65, one finally has

∆D(2)ϕ =

{
4

15
Ca

bcd∇c(ξbd) +
4

5
∇d(Ca

bcd)ξbc
}
∇a(ϕ)

+

{
2

15
Cabcd∇a∇c(ξbd) +

2

5
∇c∇d(C

d
abc)ξ

ab − 4

15
∇d(C

d
abc)∇b(ξac)

}
ϕ , (B.84)

which proves the theorem.
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Appendix C

Proof of theorem 4.7

I have to show that the only candidate for a physically admissible, 2nd order higher symmetry
of the massless Dirac operator such that D′(2)Ψ′ = e3σ/2D(2)Ψ under a Weyl transformation is

D(2) = ξαβα̇β̇∇αα̇∇ββ̇ +
2

3
∇(α

β̇
ξβγ)α̇β̇∇αα̇Mβγ +

2

3
∇ (α̇
β ξαββ̇γ̇)∇αα̇M β̇γ̇ +

8

9
∇ββ̇(ξαβα̇β̇)∇αα̇

+

(
2

9
∇(α

α̇∇γβ̇ξ
β)γα̇β̇ +

1

3
E

(α

γα̇β̇
ξβ)γα̇β̇

)
Mαβ

+

(
2

9
∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ +
1

3
E

(α̇
αβγ̇ ξαββ̇)γ̇

)
M α̇β̇ +

2

15
∇αα̇∇ββ̇(ξαβα̇β̇)− 7

10
Eαβα̇β̇ξ

αβα̇β̇ ,

(C.1)

and subsequently

γa∇aD
(2)Ψ =

[
1

3
(C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ − C γµ

αβ ξγµα̇β̇)∇ββ̇χα̇ +

(
4

15
Cµγβ

α∇
β̇

(β ξγµ)α̇β̇

− 1

15
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇) −
2

15
ξγβγ̇α̇∇

µ
γ̇(Cαβγµ)− 7

15
ξ γβ̇γ̇
α ∇ µ̇

γ (C α̇β̇γ̇µ̇)

)
χα̇,

1

3
(Cαβ

γµξ
γµα̇β̇ − C α̇β̇

γ̇µ̇ξ
αβγ̇µ̇)∇ββ̇ψα +

(
4

15
C α̇
µ̇γ̇β̇
∇ (β̇
β ξαβγ̇µ̇)

− 1

15
Cα

βγµ∇
(µ

β̇
ξγβ)α̇β̇ − 2

15
ξα
γβ̇γ̇
∇γ

µ̇(C α̇β̇γ̇µ̇)− 7

15
ξ α̇
γβγ̇ ∇ γ̇

µ (Cαβγµ)

)
ψα

]T
.

(C.2)

To start off with, I only have equation 4.47, namely

D(2) = ξαβα̇β̇∇αα̇∇ββ̇ + ξαβγα̇∇αα̇Mβγ + ξαα̇β̇γ̇∇αα̇M β̇γ̇ + ξαα̇∇αα̇ + ξαβMαβ + ξα̇β̇M α̇β̇ + ξ ,

(C.3)

with ξαβα̇β̇ = ξ(αβ)(α̇β̇), ξαβγα̇ = ξ(αβγ)α̇, ξαα̇β̇γ̇ = ξα(α̇β̇γ̇), ξαβ = ξ(αβ) and ξα̇β̇ = ξ(α̇β̇). From
here, I have to constrain the lower order coefficients in terms of the top component, thereby
deriving the claimed form of D(2). In analogy with lemma 4.4, I will begin by evaluating
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γa∇aD
(2)Ψ (albeit term by term because the whole expression is too long).

γa∇a(ξ
αβα̇β̇∇αα̇∇ββ̇Ψ) =

[
0 (σa)αα̇

(σ̃a)α̇α 0

][
∇a(ξ

βγβ̇γ̇∇ββ̇∇γγ̇ψα)

∇a(ξ
βγβ̇γ̇∇ββ̇∇γγ̇χ

α̇)

]

=

[
∇αα̇(ξβγβ̇γ̇∇ββ̇∇γγ̇χ

α̇)

∇αα̇(ξβγβ̇γ̇∇ββ̇∇γγ̇ψα)

]

=

[
∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇χ

α̇ + ξβγβ̇γ̇∇αα̇∇ββ̇∇γγ̇χ
α̇

∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇ψα + ξβγβ̇γ̇∇αα̇∇ββ̇∇γγ̇ψα

]

=

[
∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇χ

α̇ + ξβγβ̇γ̇[∇αα̇,∇ββ̇∇γγ̇]χ
α̇

∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇ψα + ξβγβ̇γ̇[∇αα̇,∇ββ̇∇γγ̇]ψα

]
(C.4)

as ∇αα̇χ
α̇ = 0 and ∇αα̇ψα = 0.

Since a commutator reduces the number of derivatives by 2 and each of the remaining terms
in D(2) has at most 1 derivative, γa∇aD

(2)Ψ can have at most two derivatives on Ψ.
∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇χ

α̇ and ∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇ψα are two such terms. Since ξβγβ̇γ̇ = ξ(βγ)(β̇γ̇),
by equation 3.28,

∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇ψα

=

(
∇(α(α̇ξβγ)β̇γ̇) +

1

3
(εαβ∇ (α̇

µ ξγµβ̇γ̇) + εαγ∇ (α̇
µ ξβµβ̇γ̇) + εα̇β̇∇(α

µ̇ξ
βγ)γ̇µ̇ + εα̇γ̇∇(α

µ̇ξ
βγ)β̇µ̇)

+
1

9
(εαβεα̇β̇∇µµ̇ξ

γµγ̇µ̇ + εαβεα̇γ̇∇µµ̇ξ
γµβ̇µ̇ + εαγεα̇β̇∇µµ̇ξ

βµγ̇µ̇ + εαγεα̇γ̇∇µµ̇ξ
βµβ̇µ̇)

)
×∇ββ̇∇γγ̇ψα . (C.5)

εαγ∇ββ̇∇γγ̇ψα = ∇ββ̇∇α
γ̇ψα = 0 and εαβ∇ββ̇∇γγ̇ψα = ∇α

β̇
∇γγ̇ψα. The latter simplifies to

∇α
β̇
∇γγ̇ψα = ∇γγ̇∇α

β̇
ψα + [∇α

β̇
,∇γγ̇]ψα

= 0 + (Rα µν

β̇γγ̇
Mµν +Rα µ̇ν̇

β̇γγ̇
M µ̇ν̇)ψα

= −R βα

ββ̇γγ̇
ψα

= −(εβ̇γ̇C
βα

βγ + εβγE
βα

β̇γ̇
+ εβ̇γ̇(δ

β
βδ

α
γ + δβγδ

α
β)F )ψα

= Eα
γβ̇γ̇

ψα + 3εγ̇β̇Fψγ . (C.6)

Plugging this back into the expression above,

∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇ψα

=

(
∇(α(α̇ξβγ)β̇γ̇) +

1

3
(εα̇β̇∇(α

µ̇ξ
βγ)γ̇µ̇ + εα̇γ̇∇(α

µ̇ξ
βγ)β̇µ̇)

)
∇ββ̇∇γγ̇ψα

+
1

3
(Eα

γβ̇γ̇
ψα + 3εγ̇β̇Fψγ)∇

(α̇
µ ξγµβ̇γ̇)

+
1

9
(εα̇β̇∇µµ̇ξ

γµγ̇µ̇ + εα̇γ̇∇µµ̇ξ
γµβ̇µ̇)(Eα

γβ̇γ̇
ψα + 3εγ̇β̇Fψγ)

=

(
∇(α(α̇ξβγ)β̇γ̇) +

1

3
(εα̇β̇∇(α

µ̇ξ
βγ)γ̇µ̇ + εα̇γ̇∇(α

µ̇ξ
βγ)β̇µ̇)

)
∇ββ̇∇γγ̇ψα

+
1

3
Eα

γβ̇γ̇
∇ (α̇
β ξβγβ̇γ̇)ψα +

2

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)ψα . (C.7)
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Some further simplification is possible because

εα̇γ̇∇(α
µ̇ξ

βγ)β̇µ̇∇ββ̇∇γγ̇ψα = εα̇β̇∇(α
µ̇ξ

βγ)γ̇µ̇∇γγ̇∇ββ̇ψα

= εα̇β̇∇(α
µ̇ξ

βγ)γ̇µ̇∇ββ̇∇γγ̇ψα + εα̇β̇∇(α
µ̇ξ

βγ)γ̇µ̇[∇γγ̇,∇ββ̇]ψα (C.8)

and the commutator term can be decomposed to

εα̇β̇∇(α
µ̇ξ

βγ)γ̇µ̇[∇γγ̇,∇ββ̇]ψα

= ∇(α

β̇
ξβγ)β̇γ̇[∇γγ̇,∇ α̇

β ]ψα

= ∇(α

β̇
ξβγ)β̇γ̇(R α̇µν

γγ̇β Mµν +R α̇µ̇ν̇
γγ̇β M µ̇ν̇)ψα

= ∇(α

β̇
ξβγ)β̇γ̇R α̇ µ

γγ̇β α ψµ

= ∇(α

β̇
ξβγ)β̇γ̇(−δα̇γ̇C

µ
γβα + εγβE

µ α̇
α γ̇ − δα̇γ̇ (−δµβεγα − δ

µ
γεβα)F )ψµ

= ∇(α

β̇
ξβγ)α̇β̇Cαβγµψ

µ . (C.9)

Thus finally,

∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇ψα =

(
∇(α(α̇ξβγ)β̇γ̇) +

2

3
εα̇β̇∇(α

µ̇ξ
βγ)γ̇µ̇

)
∇ββ̇∇γγ̇ψα +

1

3
∇(α

β̇
ξβγ)α̇β̇Cαβγµψ

µ

+
1

3
Eα

γβ̇γ̇
∇ (α̇
β ξβγβ̇γ̇)ψα +

2

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)ψα . (C.10)

Similarly, for the other term in γa∇a(ξ
αβα̇β̇∇αα̇∇ββ̇Ψ) with two derivatives,

∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇χ
α̇

= ∇αα̇(ξβγβ̇γ̇)∇
ββ̇∇γγ̇χα̇

=

(
∇(α(α̇ξβγ)β̇γ̇) +

1

3
(εαβ∇µ

(α̇ξγµβ̇γ̇) + εαγ∇µ
(α̇ξβµβ̇γ̇) + εα̇β̇∇

µ̇
(α ξβγ)γ̇µ̇ + εα̇γ̇∇ µ̇

(α ξβγ)β̇µ̇)

+
1

9
(εαβεα̇β̇∇

µµ̇ξγµγ̇µ̇ + εαβεα̇γ̇∇µµ̇ξγµβ̇µ̇ + εαγεα̇β̇∇
µµ̇ξβµγ̇µ̇ + εαγεα̇γ̇∇µµ̇ξβµβ̇µ̇)

)
×∇ββ̇∇γγ̇χα̇ . (C.11)

Again, εα̇γ̇∇ββ̇∇γγ̇χα̇ = ∇ββ̇∇γ
α̇χ

α̇ = 0, εα̇β̇∇ββ̇∇γγ̇χα̇ = ∇β
α̇∇γγ̇χα̇ and

∇β
α̇∇γγ̇χα̇ = ∇γγ̇∇β

α̇χ
α̇ + [∇β

α̇,∇γγ̇]χα̇

= 0 + (Rβ γγ̇µν
α̇ Mµν +Rβ γγ̇µ̇ν̇

α̇ Mµ̇ν̇)χ
α̇

= Rβα̇γγ̇

α̇β̇
χβ̇

= (εγβC α̇γ̇

α̇β̇
+ εγ̇α̇Eβγ

α̇β̇
+ εγβ(δα̇α̇δ

γ̇

β̇
+ δα̇

β̇
δγ̇α̇)F )χβ̇

= Eγβγ̇

β̇
χβ̇ + 3εγβFχγ̇ . (C.12)
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Again, plugging this back into the expression above,

∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇χα̇

=

(
∇(α(α̇ξβγ)β̇γ̇) +

1

3
(εαβ∇µ

(α̇ξγµβ̇γ̇) + εαγ∇µ
(α̇ξβµβ̇γ̇))

)
∇ββ̇∇γγ̇χα̇

+
1

3
(Eγβγ̇

β̇
χβ̇ + 3εγβFχγ̇)∇ µ̇

(α ξβγ)γ̇µ̇

+
1

9
(εαβ∇µµ̇ξγµγ̇µ̇ + εαγ∇µµ̇ξβµγ̇µ̇)(Eγβγ̇

β̇
χβ̇ + 3εγβFχγ̇)

=

(
∇(α(α̇ξβγ)β̇γ̇) +

1

3
(εαβ∇µ

(α̇ξγµβ̇γ̇) + εαγ∇µ
(α̇ξβµβ̇γ̇))

)
∇ββ̇∇γγ̇χα̇

+
1

3
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇χ
α̇ +

2

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)χα̇ . (C.13)

As before,

εαγ∇µ
(α̇ξβµβ̇γ̇)∇

ββ̇∇γγ̇χα̇ = εαβ∇µ
(α̇ξγµβ̇γ̇)∇

γγ̇∇ββ̇χα̇

= εαβ∇µ
(α̇ξγµβ̇γ̇)∇

ββ̇∇γγ̇χα̇ + εαβ∇µ
(α̇ξγµβ̇γ̇)[∇

γγ̇,∇ββ̇]χα̇ (C.14)

εαβ∇µ
(α̇ξγµβ̇γ̇)[∇

γγ̇,∇ββ̇]χα̇ = ∇β
(α̇ξβγβ̇γ̇)[∇

γγ̇,∇ β̇
α ]χα̇

= ∇β
(α̇ξβγβ̇γ̇)(R

γγ̇ β̇µν
α Mµν +Rγγ̇ β̇µ̇ν̇

α Mµν)χ
α̇

= ∇β
(α̇ξβγβ̇γ̇)R

γγ̇ β̇α̇µ̇
α χµ̇

= ∇β
(α̇ξβγβ̇γ̇)(δ

γ
αC

γ̇β̇α̇µ̇ + εβ̇γ̇Eγ α̇µ̇
α

+ δγα(εα̇γ̇εµ̇β̇ + εα̇β̇εµ̇γ̇)F )χµ̇

= ∇β
(α̇ξαββ̇γ̇)C

α̇β̇γ̇µ̇χµ̇ . (C.15)

Thus finally,

∇αα̇(ξβγβ̇γ̇)∇ββ̇∇γγ̇χα̇ =

(
∇(α(α̇ξβγ)β̇γ̇) +

2

3
εαβ∇µ

(α̇ξγµβ̇γ̇)

)
∇ββ̇∇γγ̇χα̇ +

1

3
∇β

(α̇ξαββ̇γ̇)C
α̇β̇γ̇µ̇χµ̇

+
1

3
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇χ
α̇ +

2

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)χα̇ . (C.16)

Next, another term of γa∇aD
(2)Ψ which could lead to two derivatives on Ψ is

γa∇a((ξ
αβγα̇∇αα̇Mβγ + ξαα̇β̇γ̇∇αα̇M β̇γ̇)Ψ)

=

[
0 (σa)αα̇

(σ̃a)α̇α 0

][
∇a((ξ

βγµβ̇∇ββ̇Mγµ + ξββ̇γ̇µ̇∇ββ̇M γ̇µ̇)ψα)

∇a((ξ
βγµβ̇∇ββ̇Mγµ + ξββ̇γ̇µ̇∇ββ̇M γ̇µ̇)χα̇)

]

=
1

2

[
∇αα̇(ξββ̇γ̇µ̇∇ββ̇(δα̇γ̇χµ̇ + δα̇µ̇χγ̇))

∇αα̇(ξβγµβ̇∇ββ̇(εαγψµ + εαµψγ))

]

=

[
∇αα̇(ξβα̇β̇γ̇∇ββ̇χγ̇)

∇αα̇(ξ βγβ̇
α ∇ββ̇ψγ)

]

=

[
∇αα̇(ξβα̇β̇γ̇)∇ββ̇χγ̇ + ξβα̇β̇γ̇∇αα̇∇ββ̇χγ̇
∇αα̇(ξ βγβ̇

α )∇ββ̇ψγ + ξ βγβ̇
α ∇αα̇∇ββ̇ψγ

]

=

[
∇αα̇(ξβα̇β̇γ̇)∇ββ̇χγ̇ + εαβξγα̇β̇γ̇∇ββ̇∇γγ̇χα̇

∇αα̇(ξ βγβ̇
α )∇ββ̇ψγ − εα̇β̇ξαβγγ̇∇ββ̇∇γγ̇ψα ,

]
(C.17)
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which has two terms with two derivatives on Ψ. The only other term of γa∇aD
(2)Ψ which

could lead to two derivatives on Ψ is

γa∇a(ξ
αα̇∇αα̇Ψ) =

[
0 (σa)αα̇

(σ̃a)α̇α 0

][
∇a(ξ

ββ̇∇ββ̇ψα)

∇a(ξ
ββ̇∇ββ̇χ

α̇)

]

=

[
∇αα̇(ξββ̇∇ββ̇χ

α̇)

∇αα̇(ξββ̇∇ββ̇ψα)

]

=

[
∇αα̇(ξββ̇)∇ββ̇χ

α̇ + ξββ̇∇αα̇∇ββ̇χ
α̇

∇αα̇(ξββ̇)∇ββ̇ψα + ξββ̇∇αα̇∇ββ̇ψα

]

=

[
∇αα̇(ξββ̇)∇ββ̇χ

α̇ + ξββ̇[∇αα̇,∇ββ̇]χα̇

∇αα̇(ξββ̇)∇ββ̇ψα + ξββ̇[∇αα̇,∇ββ̇]ψα

]
, (C.18)

which does not actually have any terms with two derivatives on Ψ.

Collating the results of the last few pages,

γa∇aD
(2)Ψ

=

[(
∇(α(α̇ξβγ)β̇γ̇) + εαβ

(
2

3
∇µ

(α̇ξγµβ̇γ̇) + ξγα̇β̇γ̇

))
∇ββ̇∇γγ̇χα̇ +

1

3
∇β

(α̇ξαββ̇γ̇)C
α̇β̇γ̇µ̇χµ̇

+
1

3
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇χ
α̇ +

2

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)χα̇ + ξβγβ̇γ̇[∇αα̇,∇ββ̇∇γγ̇]χ
α̇

+∇αα̇(ξβα̇β̇γ̇)∇ββ̇χγ̇ +∇αα̇(ξββ̇)∇ββ̇χ
α̇ + ξββ̇[∇αα̇,∇ββ̇]χα̇ +∇αα̇(ξβ̇γ̇M β̇γ̇χ

α̇ + ξχα̇),(
∇(α(α̇ξβγ)β̇γ̇) + εα̇β̇

(
2

3
∇(α

µ̇ξ
βγ)γ̇µ̇ − ξαβγγ̇

))
∇ββ̇∇γγ̇ψα +

1

3
∇(α

β̇
ξβγ)α̇β̇Cαβγµψ

µ

+
1

3
Eα

γβ̇γ̇
∇ (α̇
β ξβγβ̇γ̇)ψα +

2

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)ψα + ξβγβ̇γ̇[∇αα̇,∇ββ̇∇γγ̇]ψα

+∇αα̇(ξ βγβ̇
α )∇ββ̇ψγ +∇αα̇(ξββ̇)∇ββ̇ψα + ξββ̇[∇αα̇,∇ββ̇]ψα +∇αα̇(ξβγMβγψα + ξψα)

]T
.

(C.19)

The terms with two derivatives (the maximum) cannot be simplified further (at least in terms

of reducing the number of derivatives) since the coefficients of ∇ββ̇∇γγ̇χα̇ and ∇ββ̇∇γγ̇ψα are

symmetric in α̇, β̇ & γ̇ and α, β & γ respectively (thereby preventing the creation of ∇αα̇χ
α̇

or ∇αα̇ψα like terms).
Since Ψ is an arbitrary solutions of γa∇aΨ = 0, the ony way γa∇aD

(2)Ψ can equal zero is if

∇(α(α̇ξβγ)β̇γ̇) + εαβ

(
2

3
∇µ

(α̇ξγµβ̇γ̇) + ξγα̇β̇γ̇

)
= 0 and

∇(α(α̇ξβγ)β̇γ̇) + εα̇β̇
(

2

3
∇(α

µ̇ξ
βγ)γ̇µ̇ − ξαβγγ̇

)
= 0 . (C.20)

However, ∇(α(α̇ξβγ)β̇γ̇) is symmetric in α and β while the εαβ term is antisymmetric in those
indices. Hence, they must vanish individually. Applying a similar logic to the other equation
as well, it follows that

0 = ∇(α(α̇ξβγ)β̇γ̇) ⇐⇒ 0 = ∇(α(α̇ξβγ)β̇γ̇),

0 =
2

3
∇µ

(α̇ξγµβ̇γ̇) + ξγα̇β̇γ̇ =⇒ ξαα̇β̇γ̇ =
2

3
∇ (α̇
β ξαββ̇γ̇) and

0 =
2

3
∇(α

µ̇ξ
βγ)γ̇µ̇ − ξαβγγ̇ =⇒ ξαβγα̇ =

2

3
∇(α

β̇
ξβγ)α̇β̇ . (C.21)
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By lemma 3.3.1, the 1st equation implies ξαβα̇β̇ is conformal Killing.
Thus, so far, I have shown that the only 2nd order higher symmetry candidate is

D(2) = ξαβα̇β̇∇αα̇∇ββ̇ +
2

3
∇(α

β̇
ξβγ)α̇β̇∇αα̇Mβγ +

2

3
∇ (α̇
β ξαββ̇γ̇)∇αα̇M β̇γ̇ + ξαα̇∇αα̇

+ ξαβMαβ + ξα̇β̇M α̇β̇ + ξ (C.22)

for a conformal Killing tensor, ξαβα̇β̇.

Next, as I did in section 4.3, I will fix the remaining components, ξαα̇, ξαβ, ξα̇β̇ and ξ, by
ensuring that D′(2)Ψ′ = e3σ/2D(2)Ψ upon a Weyl transformation, e′ ma = eσe m

a .

By lemma 3.5, ξ′αβα̇β̇ = (1− 2σ)ξαβα̇β̇ under an infinitesimal Weyl transformation. Each term
in D(2) must have a net conformal weight1 of zero for D(2)Ψ to have the same conformal weight
as Ψ, namely 3/2. By equation 4.61, ∇αα̇ has a conformal weight of 1. The Lorentz generators
are unchanged under a Weyl transformation.
Therefore, ξαα̇ has a net conformal weight of −1 and ξαβ, ξα̇β̇ & ξ all have a net conformal
weight of 0.
All four tensors must be constructed out of ξαβα̇β̇ and tensors constructed fully out of the
vierbien. Furthermore, on physical grounds2, each coefficient can have at most one factor of
ξαβα̇β̇; no products or contractions of ξαβα̇β̇ are allowed.
Since all the Riemann tensor descendants have conformal weight, −2, the only possible expres-
sion for ξαα̇ is A∇ββ̇ξ

αβα̇β̇, for some constant, A.

For ξ, I can have two covariant derivatives to compensate for ξαβα̇β̇’s −2 conformal weight or
a single Riemann tensor descendant.
Since ξ is a scalar, the only possibility is ξ = B∇αα̇∇β̇ξ

αβα̇β̇ +CEαβα̇β̇ξ
αβα̇β̇ for some constants,

B and C.
The same logic as ξ applies for ξαβ, except this time I have to create a different index structure
and ensure ξαβ = ξβα. On the surface it would seem that I have four possible terms to work
with, ∇(α

α̇∇γβ̇ξ
β)γα̇β̇, ∇γβ̇∇

(α
α̇ξ

β)γα̇β̇, ∇γ
α̇∇γβ̇ξ

αβα̇β̇ and E
(α

γα̇β̇
ξβ)γα̇β̇. However,

∇γβ̇∇
(α
α̇ξ

β)γα̇β̇

= ∇(α
α̇∇γβ̇ξ

β)γα̇β̇ + [∇γβ̇,∇
(α
α̇]ξβ)γα̇β̇

= ∇(α
α̇∇γβ̇ξ

β)γα̇β̇ + (R
(α |µν|

γβ̇ α̇
Mµν +R

(α µ̇ν̇

γβ̇ α̇
M µ̇ν̇)ξ

β)γα̇β̇

= ∇(α
α̇∇γβ̇ξ

β)γα̇β̇ −R (α β)

γβ̇ α̇ µ
ξµγα̇β̇ −R (α |γ|

γβ̇ α̇ µ
ξβ)µα̇β̇ − 2R

(α (α̇

γβ̇ α̇ µ̇
ξβ)γβ̇)µ̇

= ∇(α
α̇∇γβ̇ξ

β)γα̇β̇ − (εβ̇α̇C
(αβ)

γ µ − δ(αγE
β)

µβ̇α̇
+ εβ̇α̇(−δ(βγδα)µ − ε(βα)εγµ)F )ξµγα̇β̇

− (εβ̇α̇C
(α|γ|

γ µ − δ(αγE
|γ|
µβ̇α̇

+ εβ̇α̇(−δγγδ(αµ − εγ(αεγµ)F )ξβ)µα̇β̇

− 2(−δ(αγC
(α̇

β̇α̇ µ̇
+ εβ̇α̇E

(α(α̇
γ µ̇ − δ(αγ (−δ(α̇

β̇
εα̇µ̇ − δ(α̇α̇εβ̇µ̇)F )ξβ)γβ̇)µ̇

= ∇(α
α̇∇γβ̇ξ

β)γα̇β̇ + 2E
(α

γα̇β̇
ξβ)γα̇β̇ . (C.23)

1If, upon a Weyl transformation, a tensor, T , transforms as T ′ = nσT + other terms, then T is said to have
a conformal weight of n.

2By physical grounds I mean the previously discussed interpretation of x′m = xm+ξm(x) as an infinitesimal
conformal isometry.
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Therefore, contributions from∇γβ̇∇
(α
α̇ξ

β)γα̇β̇ can be absorbed into contributions from∇(α
α̇∇γβ̇ξ

β)γα̇β̇

and Eα
γα̇β̇

ξβ)γα̇β̇. Likewise,

∇γ
α̇∇γβ̇ξ

αβα̇β̇ = ∇γ

β̇
∇γα̇ξ

αβα̇β̇

= −∇γβ̇∇
γ
α̇ξ

αβα̇β̇

=⇒ 2∇γ
α̇∇γβ̇ξ

αβα̇β̇ = [∇γ
α̇,∇γβ̇]ξαβα̇β̇

= (Rγ µν

α̇γβ̇
Mµν +Rγ µ̇ν̇

α̇γβ̇
M µ̇ν̇)ξ

αβα̇β̇

= −Rγ (α

α̇γβ̇ µ
ξβ)µα̇β̇ −Rγ (α̇

α̇γβ̇ µ̇
ξαββ̇)µ̇

= −(εα̇β̇C
γ (α
γ µ + δγγE

(α

µα̇β̇
+ εα̇β̇(−εγ(αεγµ − δ(αγδ|γ|µ)F )ξβ)µα̇β̇

− (δγγC
(α̇

α̇β̇ µ̇
+ εα̇β̇E

γ (α̇
γ µ̇ + δγγ (−δ(α̇α̇εβ̇µ̇ − δ

(α̇

β̇
εα̇µ̇)F )ξαββ̇)µ̇

=⇒ ∇γ
α̇∇γβ̇ξ

αβα̇β̇ = −E(α

γα̇β̇
ξβ)γα̇β̇ (C.24)

and thus ∇γ
α̇∇γβ̇ξ

αβα̇β̇ can be absorbed into E
(α

γα̇β̇
ξβ)γα̇β̇ too.

Hence, it suffices to let ξαβ = D∇(α
α̇∇γβ̇ξ

β)γα̇β̇ +GEα
γα̇β̇

ξβ)γα̇β̇ for some constants, D and G.

Similarly, ξα̇β̇ = H∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ + IE
(α̇

αβγ̇ ξαββ̇)γ̇ for some constants, H and I.
With these results, so far I have

D(2) = ξαβα̇β̇∇αα̇∇ββ̇ +
2

3
∇(α

β̇
ξβγ)α̇β̇∇αα̇Mβγ +

2

3
∇ (α̇
β ξαββ̇γ̇)∇αα̇M β̇γ̇ + A∇ββ̇(ξαβα̇β̇)∇αα̇

+ (D∇(α
α̇∇γβ̇ξ

β)γα̇β̇ +GE
(α

γα̇β̇
ξβ)γα̇β̇)Mαβ

+ (H∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ + IE
(α̇

αβγ̇ ξαββ̇)γ̇)M α̇β̇ +B∇αα̇∇ββ̇(ξαβα̇β̇) + CEαβα̇β̇ξ
αβα̇β̇

(C.25)

and I have to find A, B, C, D, G, H and I from the Weyl transformation of D(2)Ψ. I shall
embark on that task by evaluating the Weyl transformations term by term.

ξ′αβα̇β̇∇′αα̇∇′ββ̇Ψ
′

= (1− 2σ)ξαβα̇β̇((1 + σ)∇αα̇ +∇γ
α̇(σ)Mαγ +∇ γ̇

α M α̇γ̇)((1 + σ)∇ββ̇ +∇ρ

β̇
(σ)Mβρ

+∇ ρ̇
β (σ)M β̇ρ̇)

((
1 +

3

2
σ

)
Ψ

)
= ξαβα̇β̇∇αα̇∇ββ̇Ψ− 2σξαβα̇β̇∇αα̇∇ββ̇Ψ + ξαβα̇β̇σ∇αα̇∇ββ̇Ψ + ξαβα̇β̇∇γ

α̇(σ)Mαγ(∇ββ̇Ψ)

+ ξαβα̇β̇∇ γ̇
α (σ)M α̇γ̇(∇ββ̇Ψ) + ξαβα̇β̇∇αα̇(σ∇ββ̇Ψ) + ξαβα̇β̇∇αα̇(∇ρ

β̇
(σ)MβρΨ)

+ ξαβα̇β̇∇αα̇(∇ ρ̇
β (σ)M β̇ρ̇Ψ) +

3

2
ξαβα̇β̇∇αα̇∇ββ̇(σΨ)

=

(
1 +

3

2
σ

)
ξαβα̇β̇∇αα̇∇ββ̇Ψ +

1

2
ξαβα̇β̇∇γ

α̇(σ)(εβα∇γβ̇Ψ + εβγ∇αβ̇Ψ)

+ ξαβα̇β̇∇γ
α̇(σ)∇ββ̇MαγΨ +

1

2
ξαβα̇β̇∇ γ̇

α (σ)(εβ̇α̇∇βγ̇Ψ + εβ̇γ̇∇βα̇Ψ)

+ ξαβα̇β̇∇ γ̇
α (σ)∇ββ̇M α̇γ̇Ψ + ξαβα̇β̇∇αα̇(σ)∇ββ̇Ψ + ξαβα̇β̇∇αα̇(∇ρ

β̇
(σ)MβρΨ)

+ ξαβα̇β̇∇αα̇(∇ ρ̇
β (σ)M β̇ρ̇Ψ) +

3

2
ξαβα̇β̇∇αα̇∇ββ̇(σ)Ψ + 3ξαβα̇β̇∇αα̇(σ)∇ββ̇Ψ (C.26)
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ξ′βγβ̇γ̇∇′
ββ̇
∇′γγ̇Ψ′

=

(
1 +

3

2
σ

)
ξβγβ̇γ̇∇ββ̇∇γγ̇Ψ + 5ξβγβ̇γ̇∇ββ̇(σ)∇γγ̇Ψ + ξβγβ̇γ̇∇µ

β̇
(σ)∇γγ̇MβµΨ

+ ξβγβ̇γ̇∇ µ̇
β (σ)∇γγ̇M β̇µ̇Ψ + ξβγβ̇γ̇∇ββ̇(∇µ

γ̇(σ)MγµΨ) + ξβγβ̇γ̇∇ββ̇(∇ µ̇
γ (σ)M γ̇µ̇Ψ)

+
3

2
ξβγβ̇γ̇∇ββ̇∇γγ̇(σ)Ψ (C.27)

ξβγβ̇γ̇∇µ

β̇
(σ)∇γγ̇MβµΨ + ξβγβ̇γ̇∇ µ̇

β (σ)∇γγ̇M β̇µ̇Ψ

=

[
ξβγβ̇γ̇∇µ

β̇
(σ)∇γγ̇Mβµψα

ξβγβ̇γ̇∇ µ̇
β (σ)∇γγ̇M β̇µ̇χ

α̇

]

=
1

2

[
ξβγβ̇γ̇∇µ

β̇
(σ)∇γγ̇(εαβψµ + εαµψβ)

ξβγβ̇γ̇∇ µ̇
β (σ)∇γγ̇(δ

α̇
β̇
χµ̇ + δα̇µ̇χβ̇)

]

=
1

2

[
ξ γβ̇γ̇
α ∇β

β̇
(σ)∇γγ̇ψβ + ξβγβ̇γ̇∇αβ̇(σ)∇γγ̇ψβ

ξβγα̇γ̇∇ β̇
β (σ)∇γγ̇χβ̇ + ξβγβ̇γ̇∇ α̇

β (σ)∇γγ̇χβ̇

]
(C.28)

ξβγβ̇γ̇∇ββ̇(∇µ
γ̇(σ)MγµΨ) + ξβγβ̇γ̇∇ββ̇(∇ µ̇

γ (σ)M γ̇µ̇Ψ)

=

[
ξβγβ̇γ̇∇ββ̇(∇µ

γ̇(σ)Mγµψα)

ξβγβ̇γ̇∇ββ̇(∇ µ̇
γ (σ)M γ̇µ̇χ

α̇)

]

=
1

2

[
ξβγβ̇γ̇∇ββ̇(∇µ

γ̇(σ)(εαγψµ + εαµψγ))

ξβγβ̇γ̇∇ββ̇(∇ µ̇
γ (σ)(δα̇γ̇χµ̇ + δα̇µ̇χγ̇))

]

=
1

2

[
ξβ β̇γ̇
α ∇ββ̇(∇γ

γ̇(σ)ψγ) + ξβγβ̇γ̇∇ββ̇(∇αγ̇(σ)ψγ)

ξβγβ̇α̇∇ββ̇(∇ γ̇
γ (σ)χγ̇) + ξβγβ̇γ̇∇ββ̇(∇ α̇

γ (σ)χγ̇)

]

=
1

2

[
ξ γβ̇γ̇
α ∇β

β̇
(σ)∇γγ̇ψβ + ξβγβ̇γ̇∇αβ̇(σ)∇γγ̇ψβ + ξβ β̇γ̇

α ∇ββ̇∇
γ
γ̇(σ)ψγ + ξβγβ̇γ̇∇ββ̇∇αγ̇(σ)ψγ

ξβγα̇γ̇∇ β̇
β (σ)∇γγ̇χβ̇ + ξβγβ̇γ̇∇ α̇

β (σ)∇γγ̇χβ̇ + ξβγβ̇α̇∇ββ̇∇ γ̇
γ (σ)χγ̇ + ξβγβ̇γ̇∇ββ̇∇ α̇

γ (σ)χγ̇

]
(C.29)

Putting these expressions back,

ξ′βγβ̇γ̇∇′
ββ̇
∇′γγ̇Ψ′

=

(
1 +

3

2
σ

)
ξβγβ̇γ̇∇ββ̇∇γγ̇Ψ + 5ξβγβ̇γ̇∇ββ̇(σ)∇γγ̇Ψ +

3

2
ξβγβ̇γ̇∇ββ̇∇γγ̇(σ)Ψ

+

[
ξ γβ̇γ̇
α ∇β

β̇
(σ)∇γγ̇ψβ + ξβγβ̇γ̇∇αβ̇(σ)∇γγ̇ψβ +

1

2
ξβ β̇γ̇
α ∇ββ̇∇

γ
γ̇(σ)ψγ

+
1

2
ξβγβ̇γ̇∇ββ̇∇αγ̇(σ)ψγ,

ξβγα̇γ̇∇ β̇
β (σ)∇γγ̇χβ̇ + ξβγβ̇γ̇∇ α̇

β (σ)∇γγ̇χβ̇ +
1

2
ξβγβ̇α̇∇ββ̇∇

γ̇
γ (σ)χγ̇

+
1

2
ξβγβ̇γ̇∇ββ̇∇

α̇
γ (σ)χγ̇

]T
(C.30)

∇′(α
β̇
ξ′βγ)α̇β̇ = ((1 + σ)∇(α

β̇
+∇µ

β̇
(σ)M (α

µ +∇(αγ̇(σ)M β̇γ̇)((1− 2σ)ξβγ)α̇β̇)

= (1− σ)∇(α

β̇
ξβγ)α̇β̇ − 2∇(α

β̇
(σ)ξβγ)α̇β̇ +∇µ

β̇
(σ)M (α

µ ξ
βγ)α̇β̇

+∇(αγ̇(σ)M β̇γ̇ξ
βγ)α̇β̇ (C.31)
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∇′(α
β̇
ξ′βγ)α̇β̇ = (1− σ)∇(α

β̇
ξβγ)α̇β̇ − 2∇(α

β̇
(σ)ξβγ)α̇β̇ +

1

2
∇µ

β̇
(σ)
(
ε(αβξ γ)α̇β̇

µ + δ(βµξ
αγ)α̇β̇

+ ε(αγξβ) α̇β̇
µ + δ(γµξ

βα)α̇β̇
)

+
1

2
∇(αγ̇(σ)

(
δα̇
β̇
ξ
βγ) β̇

γ̇ + δα̇γ̇ξ
βγ) β̇

β̇

+ δβ̇
β̇
ξ
βγ)α̇

γ̇ + δβ̇γ̇ξ
βγ)α̇

β̇

)
= (1− σ)∇(α

β̇
ξβγ)α̇β̇ − 3∇(α

β̇
(σ)ξβγ)α̇β̇ (C.32)

∇′ (α̇
β ξ′αββ̇γ̇) = ((1 + σ)∇ (α̇

β +∇γ(α̇(σ)Mβγ +∇ µ̇
β (σ)M

(α̇
µ̇)((1− 2σ)ξαββ̇γ̇))

= (1− σ)∇ (α̇
β ξαββ̇γ̇) − 2∇ (α̇

β (σ)ξαββ̇γ̇) +
1

2
∇γ(α̇(σ)

(
δαβξ

ββ̇γ̇)
γ + δαγξ

ββ̇γ̇)
β

+ δββξ
α β̇γ̇)
γ + δβγξ

α β̇γ̇)
β

)
+

1

2
∇ µ̇
β (σ)

(
ε(α̇β̇ξ

αβ γ̇)
µ̇ + δ

(β̇
µ̇ξ

αβα̇γ̇)

+ ε(α̇γ̇ξ
αββ̇ )

µ̇ + δ
(γ̇
µ̇ξ

αββ̇α̇)
)

= (1− σ)∇ (α̇
β ξαββ̇γ̇) − 3∇ (α̇

β (σ)ξαββ̇γ̇) (C.33)

=⇒ (∇′(βγ̇ξ′γµ)β̇γ̇∇′ββ̇Mγµ +∇′ (β̇
γ ξ′βγγ̇µ̇)∇′

ββ̇
M γ̇µ̇)Ψ′

= (((1− σ)∇(β
γ̇ξ
γµ)β̇γ̇ − 3∇(β

γ̇(σ)ξγµ)β̇γ̇)((1 + σ)∇ββ̇ +∇ν
β̇
(σ)Mβν +∇ ν̇

β (σ)M β̇ν̇)Mγµ

+ ((1− σ)∇ (β̇
γ ξβγγ̇µ̇) − 3∇ (β̇

γ (σ)ξβγγ̇µ̇))((1 + σ)∇ββ̇ +∇ν
β̇
(σ)Mβν +∇ ν̇

β (σ)M β̇ν̇)M γ̇µ̇)

×
((

1 +
3

2
σ

)
Ψ

)
=

(
1 +

3

2
σ

)
(∇(β

γ̇ξ
γµ)β̇γ̇∇ββ̇Mγµ +∇ (β̇

γ ξβγγ̇µ̇)∇ββ̇M γ̇µ̇)Ψ− 3(∇(β
γ̇(σ)ξγµ)β̇γ̇∇ββ̇Mγµ

+∇ (β̇
γ (σ)ξβγγ̇µ̇)∇ββ̇M γ̇µ̇)Ψ + (∇(β

γ̇ξ
γµ)β̇γ̇∇ν

β̇
(σ)MβνMγµ

+∇ (β̇
γ ξβγγ̇µ̇)∇ ν̇

β (σ)M β̇ν̇M γ̇µ̇)Ψ

+
3

2
(∇(β

γ̇ξ
γµ)β̇γ̇∇ββ̇(σ)Mγµ +∇ (β̇

γ ξβγγ̇µ̇)∇ββ̇(σ)M γ̇µ̇)Ψ

=

(
1 +

3

2
σ

)
(∇(β

γ̇ξ
γµ)β̇γ̇∇ββ̇Mγµ +∇ (β̇

γ ξβγγ̇µ̇)∇ββ̇M γ̇µ̇)Ψ

+

[
− 3∇(β

γ̇(σ)ξγµ)β̇γ̇∇ββ̇Mγµψα +∇(β
γ̇ξ
γµ)β̇γ̇∇ν

β̇
(σ)MβνMγµψα

+
3

2
∇(β

γ̇ξ
γµ)β̇γ̇∇ββ̇(σ)Mγµψα,

− 3∇ (β̇
γ (σ)ξβγγ̇µ̇)∇ββ̇M γ̇µ̇χ

α̇ +∇ (β̇
γ ξβγγ̇µ̇)∇ ν̇

β (σ)M β̇ν̇M γ̇µ̇χ
α̇

+
3

2
∇ (β̇
γ ξβγγ̇µ̇)∇ββ̇(σ)M γ̇µ̇χ

α̇

]T
=
(

1 +
3

2
σ
)

(∇(β
γ̇ξ
γµ)β̇γ̇∇ββ̇Mγµ +∇ (β̇

γ ξβγγ̇µ̇)∇ββ̇M γ̇µ̇)Ψ

+

[
− 3εαµ∇(β

γ̇(σ)ξγµ)β̇γ̇∇ββ̇ψγ +∇(β
γ̇ξ
γµ)β̇γ̇∇ν

β̇
(σ)Mβν(εαµψγ)

+
3

2
εαµ∇(β

γ̇ξ
γµ)β̇γ̇∇ββ̇(σ)ψγ,

− 3∇ (α̇
γ (σ)ξβγβ̇γ̇)∇ββ̇χγ̇ +∇ (α̇

γ ξβγβ̇γ̇)∇ ν̇
β (σ)M β̇ν̇χγ̇ +

3

2
∇ (α̇
γ ξβγβ̇γ̇)∇ββ̇(σ)χγ̇

]T
(C.34)
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(∇′(βγ̇ξ′γµ)β̇γ̇∇′ββ̇Mγµ +∇′ (β̇
γ ξ′βγγ̇µ̇)∇′

ββ̇
M γ̇µ̇)Ψ′

=

(
1 +

3

2
σ

)
(∇(β

γ̇ξ
γµ)β̇γ̇∇ββ̇Mγµ +∇ (β̇

γ ξβγγ̇µ̇)∇ββ̇M γ̇µ̇)Ψ

+

[
∇ γ̇

(α ξβγ)β̇γ̇∇νβ̇(σ)Mβ
νψ

γ − 3∇ γ̇
(α (σ)ξβγ)β̇γ̇∇ββ̇ψγ + 3

2
∇ γ̇

(α ξβγ)β̇γ̇∇ββ̇(σ)ψγ

∇ (α̇
γ ξβγβ̇γ̇)∇ ν̇

β (σ)M β̇ν̇χγ̇ − 3∇ (α̇
γ (σ)ξβγβ̇γ̇)∇ββ̇χγ̇ + 3

2
∇ (α̇
γ ξβγβ̇γ̇)∇ββ̇(σ)χγ̇

]

=

(
1 +

3

2
σ

)
(∇(β

γ̇ξ
γµ)β̇γ̇∇ββ̇Mγµ +∇ (β̇

γ ξβγγ̇µ̇)∇ββ̇M γ̇µ̇)Ψ

+

[
1
2
∇ γ̇

(α ξβγ)β̇γ̇∇νβ̇(σ)(εβγψν + δγνψ
β)− 3∇ γ̇

(α (σ)ξβγ)β̇γ̇∇ββ̇ψγ + 3
2
∇ γ̇

(α ξβγ)β̇γ̇∇ββ̇(σ)ψγ

1
2
∇ (α̇
γ ξβγβ̇γ̇)∇ ν̇

β (σ)(εγ̇β̇χν̇ + εγ̇ν̇χβ̇)− 3∇ (α̇
γ (σ)ξβγβ̇γ̇)∇ββ̇χγ̇ + 3

2
∇ (α̇
γ ξβγβ̇γ̇)∇ββ̇(σ)χγ̇

]

=

(
1 +

3

2
σ

)
(∇(β

γ̇ξ
γµ)β̇γ̇∇ββ̇Mγµ +∇ (β̇

γ ξβγγ̇µ̇)∇ββ̇M γ̇µ̇)Ψ

+

[
2∇ γ̇

(α ξβγ)β̇γ̇∇ββ̇(σ)ψγ − 3∇ γ̇
(α (σ)ξβγ)β̇γ̇∇ββ̇ψγ

2∇ (α̇
γ ξβγβ̇γ̇)∇ββ̇(σ)χγ̇ − 3∇ (α̇

γ (σ)ξβγβ̇γ̇)∇ββ̇χγ̇

]
(C.35)

∇′γγ̇(ξ′βγβ̇γ̇)∇′ββ̇Ψ
′

= ((1 + σ)∇γγ̇ +∇µ
γ̇(σ)Mγµ +∇ µ̇

γ (σ)M γ̇µ̇)((1− 2σ)ξβγβ̇γ̇)((1 + σ)∇ββ̇

+∇ν
β̇
(σ)Mβν +∇ ν̇

β (σ)M β̇ν̇)

((
1 +

3

2
σ

)
Ψ

)
=

(
1 +

3

2
σ

)
∇γγ̇(ξ

βγβ̇γ̇)∇ββ̇Ψ− 2∇γγ̇(σ)ξβγβ̇γ̇∇ββ̇Ψ +∇µ
γ̇(σ)Mγµ(ξβγβ̇γ̇)∇ββ̇Ψ

+∇ µ̇
γ (σ)M γ̇µ̇(ξβγβ̇γ̇)∇ββ̇Ψ +∇γγ̇(ξ

βγβ̇γ̇)∇ν
β̇
(σ)MβνΨ +∇γγ̇(ξ

βγβ̇γ̇)∇ ν̇
β (σ)M β̇ν̇Ψ

+
3

2
∇γγ̇(ξ

βγβ̇γ̇)∇ββ̇(σ)Ψ

=

(
1 +

3

2
σ

)
∇γγ̇(ξ

βγβ̇γ̇)∇ββ̇Ψ− 2∇γγ̇(σ)ξβγβ̇γ̇∇ββ̇Ψ +
3

2
∇γγ̇(ξ

βγβ̇γ̇)∇ββ̇(σ)Ψ

+
1

2
(∇µ

γ̇(σ)(δβγξ
γβ̇γ̇

µ + δβµξ
γβ̇γ̇
γ + δγγξ

β β̇γ̇
µ + δγµξ

β β̇γ̇
γ )

+∇ µ̇
γ (σ)(δβ̇γ̇ξ

βγ γ̇
µ̇ + δβ̇µ̇ξ

βγ γ̇
γ̇ + δγ̇γ̇ξ

βγβ̇
µ̇ + δγ̇µ̇ξ

βγβ̇
γ̇ ))∇ββ̇Ψ

+

[
∇γγ̇(ξ

βγβ̇γ̇)∇ν
β̇
(σ)Mβνψα

∇γγ̇(ξ
βγβ̇γ̇)∇ ν̇

β (σ)M β̇ν̇χ
α̇

]

=

(
1 +

3

2
σ

)
∇γγ̇(ξ

βγβ̇γ̇)∇ββ̇Ψ− 6∇γγ̇(σ)ξβγβ̇γ̇∇ββ̇Ψ +
3

2
∇γγ̇(ξ

βγβ̇γ̇)∇ββ̇(σ)Ψ

+
1

2

[
∇γγ̇(ξ

βγβ̇γ̇)∇ν
β̇
(σ)(εαβψν + εανψβ)

∇γγ̇(ξ
βγβ̇γ̇)∇ ν̇

β (σ)(δα̇
β̇
χν̇ + δα̇ν̇χβ̇)

]

=

(
1 +

3

2
σ

)
∇γγ̇(ξ

βγβ̇γ̇)∇ββ̇Ψ− 6∇γγ̇(σ)ξβγβ̇γ̇∇ββ̇Ψ +
3

2
∇γγ̇(ξ

βγβ̇γ̇)∇ββ̇(σ)Ψ

+
1

2

[
∇γγ̇(ξ

βγβ̇γ̇)∇αβ̇(σ)ψβ −∇γγ̇(ξαγβ̇γ̇)∇ββ̇(σ)ψβ
∇γγ̇(ξβγβ̇γ̇)∇βα̇(σ)χβ̇ −∇γγ̇(ξ

βγα̇γ̇)∇ββ̇(σ)χβ̇

]
(C.36)
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From above, ∇′
γβ̇
ξ′βγα̇β̇ = (1− σ)∇γβ̇ξ

βγα̇β̇ − 6∇γβ̇(σ)ξβγα̇β̇. Therefore,

∇′(αα̇∇′γβ̇ξ
′β)γα̇β̇

= ((1 + σ)∇(α
α̇ +∇µ

α̇(σ)M (α
µ +∇(αµ̇(σ)M α̇µ̇)((1− σ)∇γβ̇ξ

β)γα̇β̇ − 6∇γβ̇(σ)ξβ)γα̇β̇)

= ∇(α
α̇∇γβ̇ξ

β)γα̇β̇ −∇(α
α̇(σ)∇γβ̇ξ

β)γα̇β̇ − 6∇(α
α̇∇γβ̇(σ)ξβ)γα̇β̇ − 6∇γβ̇(σ)∇(α

α̇ξ
β)γα̇β̇

+∇µ
α̇(σ)M (α

µ∇γβ̇ξ
β)γα̇β̇ +∇(αµ̇(σ)M α̇µ̇∇γβ̇ξ

β)γα̇β̇

= ∇(α
α̇∇γβ̇ξ

β)γα̇β̇ −∇(α
α̇(σ)∇γβ̇ξ

β)γα̇β̇ − 6∇(α
α̇∇γβ̇(σ)ξβ)γα̇β̇ − 6∇γβ̇(σ)∇(α

α̇ξ
β)γα̇β̇

+
1

2
∇µ

α̇(σ)(ε(αβ)∇γβ̇ξ
γα̇β̇

µ + δ(βµ∇γβ̇ξ
α)γα̇β̇)

+
1

2
∇(αµ̇(σ)(δα̇α̇∇γβ̇ξ

β)γ β̇
µ̇ +∇(αµ̇(σ)δα̇µ̇∇γβ̇ξ

β)γ β̇
α̇ )

= ∇(α
α̇∇γβ̇ξ

β)γα̇β̇ − 2∇(α
α̇(σ)∇γβ̇ξ

β)γα̇β̇ − 6∇(α
α̇∇γβ̇(σ)ξβ)γα̇β̇ − 6∇γβ̇(σ)∇(α

α̇ξ
β)γα̇β̇ . (C.37)

Likewise, ∇′βγ̇ξ′αββ̇γ̇ = (1− σ)∇βγ̇ξ
αββ̇γ̇ − 6∇βγ̇(σ)ξαββ̇γ̇ and thus

∇′ (α̇
α ∇′βγ̇ξ′αββ̇)γ̇

= ((1 + σ)∇ (α̇
α +∇µ(α̇(σ)Mαµ +∇ µ̇

α (σ)M
(α̇
µ̇)((1− σ)∇βγ̇ξ

αββ̇)γ̇ − 6∇βγ̇(σ)ξαββ̇)γ̇)

= ∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ −∇ (α̇
α (σ)∇βγ̇ξ

αββ̇)γ̇ − 6∇ (α̇
α ∇βγ̇(σ)ξαββ̇)γ̇ − 6∇βγ̇(σ)∇ (α̇

α ξαββ̇)γ̇

+∇µ(α̇(σ)Mαµ∇βγ̇ξ
αββ̇)γ̇ +∇ µ̇

α (σ)M
(α̇
µ̇∇βγ̇ξ

αββ̇)γ̇

= ∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ −∇ (α̇
α (σ)∇βγ̇ξ

αββ̇)γ̇ − 6∇ (α̇
α ∇βγ̇(σ)ξαββ̇)γ̇ − 6∇βγ̇(σ)∇ (α̇

α ξαββ̇)γ̇

+
1

2
∇µ(α̇(σ)(δαα∇βγ̇ξ

ββ̇)γ̇
µ + δαµ∇βγ̇ξ

ββ̇)γ̇
α )

+
1

2
∇ µ̇
α (σ)(ε(α̇β̇)∇βγ̇ξ

αβ γ̇
µ̇ + δ

(β̇
µ̇∇βγ̇ξ

αβα̇)γ̇)

= ∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ − 2∇ (α̇
α (σ)∇βγ̇ξ

αββ̇)γ̇ − 6∇ (α̇
α ∇βγ̇(σ)ξαββ̇)γ̇ − 6∇βγ̇(σ)∇ (α̇

α ξαββ̇)γ̇ . (C.38)

Combining some of these results,

(D∇′(β
β̇
∇′µγ̇ξ′γ)µβ̇γ̇Mβγ +H∇′ (β̇

β ∇
′
γµ̇ξ
′βγγ̇)µ̇M β̇γ̇)Ψ

′

=

(
1 +

3

2
σ

)
(D∇(β

β̇
∇µγ̇ξ

γ)µβ̇γ̇Mβγ +H∇ (β̇
β ∇γµ̇ξ

βγγ̇)µ̇M β̇γ̇)Ψ

− 2

[
D(∇(β

β̇
(σ)∇µγ̇ξ

γ)µβ̇γ̇ + 3∇(β

β̇
∇µγ̇(σ)ξγ)µβ̇γ̇ + 3∇µγ̇(σ)∇(β

β̇
ξγ)µβ̇γ̇)Mβγψα

H(∇ (β̇
β (σ)∇γµ̇ξ

βγγ̇)µ̇ + 3∇ (β̇
β ∇γµ̇(σ)ξβγγ̇)µ̇ + 3∇γµ̇(σ)∇ (β̇

β ξβγγ̇)µ̇)M β̇γ̇χ
α̇

]

=

(
1 +

3

2
σ

)
(D∇(β

β̇
∇µγ̇ξ

γ)µβ̇γ̇Mβγ +H∇ (β̇
β ∇γµ̇ξ

βγγ̇)µ̇M β̇γ̇)Ψ

− 2

[
D(∇ β̇

(α (σ)∇γγ̇ξβ)γβ̇γ̇ + 3∇ β̇
(α ∇γγ̇(σ)ξβ)γβ̇γ̇ + 3∇γγ̇(σ)∇ β̇

(α ξβ)γβ̇γ̇)ψ
β

H(∇ (α̇
β (σ)∇γγ̇ξ

βγβ̇)γ̇ + 3∇ (α̇
β ∇γγ̇(σ)ξβγβ̇)γ̇ + 3∇γγ̇(σ)∇ (α̇

β ξβγβ̇)γ̇)χβ̇

]
. (C.39)

E ′
αβα̇β̇

=
1

2
(σa)αα̇(σb)ββ̇

(
R′ab −

1

4
ηabR

′
)

=
1

2
(σa)αα̇(σb)ββ̇

(
(1 + 2σ)R′ab + ηab∇c∇c(σ) + 2∇a∇b(σ)

− 1

4
ηab(1 + 2σ)R′ − 3

2
ηab∇c∇c(σ)

)
= (1 + 2σ)Eαβα̇β̇ −

1

4
εαβεα̇β̇∇

γγ̇∇γγ̇(σ) +∇αα̇∇ββ̇(σ) (C.40)
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=⇒ (GE
′(β
µβ̇γ̇

ξ′γ)µβ̇γ̇Mβγ + IE
′ (β̇
βγµ̇ ξ′βγγ̇)µ̇M β̇γ̇)Ψ

′

=

(
G

(
(1 + 2σ)E

(β

µβ̇γ̇
− 1

4
δ(βµεβ̇γ̇∇

νν̇∇νν̇(σ) +∇(β

β̇
∇µγ̇(σ)

)
((1− 2σ)ξγ)µβ̇γ̇)Mβγ

+ I

(
(1 + 2σ)E

(β̇
βγµ̇ +

1

4
εβγδ

(β̇
µ̇∇νν̇∇νν̇(σ) +∇βµ̇∇ (β̇

γ (σ)

)
((1− 2σ)ξβγγ̇)µ̇)M β̇γ̇

)
×
((

1 +
3

2
σ

)
Ψ

)
=

(
1 +

3

2
σ

)
(GE

(β

µβ̇γ̇
ξγ)µβ̇γ̇Mβγ + IE

(β̇
βγµ̇ ξβγγ̇)µ̇M β̇γ̇)Ψ

+

[
G∇(β

β̇
∇µγ̇(σ)ξγ)µβ̇γ̇Mβγψα

I∇βµ̇∇ (β̇
γ (σ)ξβγγ̇)µ̇M β̇γ̇χ

α̇

]

=

(
1 +

3

2
σ

)
(GE

(β

µβ̇γ̇
ξγ)µβ̇γ̇Mβγ + IE

(β̇
βγµ̇ ξβγγ̇)µ̇M β̇γ̇)Ψ

+

[
G∇ β̇

(α ∇γγ̇(σ)ξβ)γβ̇γ̇ψ
β

I∇ (α̇
β ∇γγ̇(σ)ξβγβ̇)γ̇χβ̇

]
(C.41)

∇′αα̇∇′ββ̇ξ
′αβα̇β̇ = ((1 + σ)∇αα̇ +∇γ

α̇(σ)Mαγ +∇ γ̇
α (σ)M α̇γ̇)

× ((1− σ)∇ββ̇ξ
αβα̇β̇ − 6∇ββ̇(σ)ξαβα̇β̇)

= ∇αα̇∇ββ̇ξ
αβα̇β̇ −∇αα̇(σ)∇ββ̇ξ

αβα̇β̇ +∇γ
α̇(σ)Mαγ∇ββ̇ξ

αβα̇β̇

+∇ γ̇
α (σ)M α̇γ̇∇ββ̇ξ

αβα̇β̇ − 6∇αα̇∇ββ̇(σ)ξαβα̇β̇ − 6∇ββ̇(σ)∇αα̇ξ
αβα̇β̇

= ∇αα̇∇ββ̇ξ
αβα̇β̇ −∇αα̇(σ)∇ββ̇ξ

αβα̇β̇ +
1

2
∇γ

α̇(σ)(δαα∇ββ̇ξ
βα̇β̇
γ + δαγ∇ββ̇ξ

βα̇β̇
α )

+∇ γ̇
α (σ)(δα̇α̇∇ββ̇ξ

αβ β̇
γ̇ + δα̇γ̇∇ββ̇ξ

αβ β̇
α̇ )− 6∇αα̇∇ββ̇(σ)ξαβα̇β̇

− 6∇ββ̇(σ)∇αα̇ξ
αβα̇β̇

= ∇αα̇∇ββ̇ξ
αβα̇β̇ − 10∇αα̇(σ)∇ββ̇ξ

αβα̇β̇ − 6∇αα̇∇ββ̇(σ)ξαβα̇β̇ (C.42)

E ′
αβα̇β̇

ξ′αβα̇β̇ =

(
(1 + 2σ)Eαβα̇β̇ −

1

4
εαβεα̇β̇∇

γγ̇∇γγ̇(σ) +∇αα̇∇ββ̇(σ)

)
× ((1− 2σ)ξαβα̇β̇)

= Eαβα̇β̇ξ
αβα̇β̇ +∇αα̇∇ββ̇(σ)ξαβα̇β̇ (C.43)
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Finally, putting together equations C.25, C.30, C.35, C.36, C.39, C.41, C.42 and C.43,

D′(2)Ψ′ =

(
1 +

3

2
σ

)
D(2)Ψ + (5− 6A)ξβγβ̇γ̇∇ββ̇(σ)∇γγ̇Ψ

+

(
3

2
− 6B + C

)
ξβγβ̇γ̇∇ββ̇∇γγ̇(σ)Ψ +

(
3A

2
− 10B

)
∇γγ̇(ξ

βγβ̇γ̇)∇ββ̇(σ)Ψ

+

[
ξ γβ̇γ̇
α ∇β

β̇
(σ)∇γγ̇ψβ + ξβγβ̇γ̇∇αβ̇(σ)∇γγ̇ψβ +

1

2
ξβ β̇γ̇
α ∇ββ̇∇

γ
γ̇(σ)ψγ

+
1

2
ξβγβ̇γ̇∇ββ̇∇αγ̇(σ)ψγ +

4

3
∇ γ̇

(α ξβγ)β̇γ̇∇
ββ̇(σ)ψγ − 2∇ γ̇

(α (σ)ξβγ)β̇γ̇∇
ββ̇ψγ

+
A

2
∇γγ̇(ξ

βγβ̇γ̇)∇αβ̇(σ)ψβ −
A

2
∇γγ̇(ξαγβ̇γ̇)∇

ββ̇(σ)ψβ − 2D∇ β̇
(α (σ)∇γγ̇ξβ)γβ̇γ̇ψ

β

+ (G− 6D)∇ β̇
(α ∇

γγ̇(σ)ξβ)γβ̇γ̇ψ
β − 6D∇γγ̇(σ)∇ β̇

(α ξβ)γβ̇γ̇ψ
β,

ξβγα̇γ̇∇ β̇
β (σ)∇γγ̇χβ̇ + ξβγβ̇γ̇∇ α̇

β (σ)∇γγ̇χβ̇ +
1

2
ξβγβ̇α̇∇ββ̇∇

γ̇
γ (σ)χγ̇

+
1

2
ξβγβ̇γ̇∇ββ̇∇

α̇
γ (σ)χγ̇ +

4

3
∇ (α̇
γ ξβγβ̇γ̇)∇ββ̇(σ)χγ̇ − 2∇ (α̇

γ (σ)ξβγβ̇γ̇)∇ββ̇χγ̇

+
A

2
∇γγ̇(ξβγβ̇γ̇)∇

βα̇(σ)χβ̇ − A

2
∇γγ̇(ξ

βγα̇γ̇)∇ββ̇(σ)χβ̇ − 2H∇ (α̇
β (σ)∇γγ̇ξ

βγβ̇)γ̇χβ̇

+ (I − 6H)∇ (α̇
β ∇γγ̇(σ)ξβγβ̇)γ̇χβ̇ − 6H∇γγ̇(σ)∇ (α̇

β ξβγβ̇)γ̇χβ̇

]T
. (C.44)

Some further simplification is possible using equation 3.25.

(ξ γβ̇γ̇
α ∇β

β̇
(σ) + ξβγβ̇γ̇∇αβ̇(σ))∇γγ̇ψβ − 2∇ γ̇

(α (σ)ξβγ)β̇γ̇∇
ββ̇ψγ

= (∇ β̇
β (σ)ξαγβ̇γ̇ +∇ β̇

α (σ)ξβγβ̇γ̇ − 2∇ β̇
(α (σ)ξβγ)β̇γ̇)∇

γγ̇ψβ

=
1

3
(εβα∇µβ̇(σ)ξµγβ̇γ̇ + εβγ∇µβ̇(σ)ξαµβ̇γ̇ + εαβ∇µβ̇(σ)ξµγβ̇γ̇ + εαγ∇µβ̇(σ)ξβµβ̇γ̇)∇

γγ̇ψβ

=
1

3
∇γβ̇(σ)ξβγβ̇γ̇∇

γ̇
α ψ

β since ∇ γ̇
β ψ

β = 0

=
1

3
ξβγβ̇γ̇∇ββ̇(σ)∇αγ̇ψγ

=
1

3
ξβγβ̇γ̇∇ββ̇(σ)∇γγ̇ψα since ∇αγ̇ψγ = ∇(αγ̇ψγ) (C.45)

Completely analogously,

(ξβγα̇γ̇∇ β̇
β (σ) + ξβγβ̇γ̇∇ α̇

β (σ))∇γγ̇χβ̇ − 2∇ (α̇
γ (σ)ξβγβ̇γ̇)∇ββ̇χγ̇

= (∇ β̇
β (σ)ξβγα̇γ̇ +∇ α̇

β (σ)ξβγβ̇γ̇ − 2∇ (α̇
β (σ)ξβγβ̇γ̇))∇γγ̇χβ̇

=
1

3
(εβ̇α̇∇βµ̇(σ)ξβγµ̇γ̇ + εβ̇γ̇∇βµ̇(σ)ξβγα̇µ̇ + εα̇β̇∇βµ̇(σ)ξβγµ̇γ̇ + εα̇γ̇∇βµ̇(σ)ξβγβ̇µ̇)∇γγ̇χβ̇

=
1

3
∇βγ̇(σ)ξβγβ̇γ̇∇ α̇

γ χβ̇

=
1

3
ξβγβ̇γ̇∇ββ̇(σ)∇γγ̇χ

α̇ (C.46)[
(ξ γβ̇γ̇
α ∇β

β̇
(σ) + ξβγβ̇γ̇∇αβ̇(σ))∇γγ̇ψβ − 2∇ γ̇

(α (σ)ξβγ)β̇γ̇∇ββ̇ψγ

(ξβγα̇γ̇∇ β̇
β (σ) + ξβγβ̇γ̇∇ α̇

β (σ))∇γγ̇χβ̇ − 2∇ (α̇
γ (σ)ξβγβ̇γ̇)∇ββ̇χγ̇

]
=

1

3
ξβγβ̇γ̇∇ββ̇(σ)∇γγ̇Ψ .

(C.47)
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1

2
ξβ β̇γ̇
α ∇ββ̇∇

γ
γ̇(σ)ψγ +

1

2
ξβγβ̇γ̇∇ββ̇∇αγ̇(σ)ψγ

=
1

2
(ξαββ̇γ̇∇

ββ̇∇ γ̇
γ (σ) + ξβγβ̇γ̇∇

ββ̇∇ γ̇
α (σ))ψγ

= ∇ β̇
(α ∇

γγ̇(σ)ξβ)γβ̇γ̇ψ
β (C.48)

1

2
ξβγβ̇α̇∇ββ̇∇

γ̇
γ (σ)χγ̇ +

1

2
ξβγβ̇γ̇∇ββ̇∇

α̇
γ (σ)χγ̇

=
1

2
ξβγα̇γ̇∇γγ̇∇ β̇

β (σ)χβ̇ +
1

2
ξβγβ̇γ̇∇γγ̇∇ α̇

β (σ)χβ̇

= ∇ (α̇
β ∇γγ̇(σ)ξβγβ̇)γ̇χβ̇ (C.49)

A

2
∇γγ̇(ξ

βγβ̇γ̇)∇αβ̇(σ)ψβ −
A

2
∇γγ̇(ξαγβ̇γ̇)∇

ββ̇(σ)ψβ

=
A

2
∇γγ̇(ξβγβ̇γ̇)∇

β̇
α (σ)ψβ +

A

2
∇γγ̇(ξαγβ̇γ̇)∇

β̇
β (σ)ψβ

= A∇ β̇
(α (σ)∇γγ̇(ξβ)γβ̇γ̇)ψ

β (C.50)

A

2
∇γγ̇(ξβγβ̇γ̇)∇

βα̇(σ)χβ̇ − A

2
∇γγ̇(ξ

βγα̇γ̇)∇ββ̇(σ)χβ̇

=
A

2
∇γγ̇(ξ

βγβ̇γ̇)∇ α̇
β (σ)χβ̇ +

A

2
∇γγ̇(ξ

βγα̇γ̇)∇ β̇
β (σ)χβ̇

= A∇ (α̇
β (σ)∇γγ̇ξ

βγβ̇)γ̇χβ̇ (C.51)

∇γγ̇(σ)∇ β̇
(α ξβ)γβ̇γ̇ψ

β

=

(
∇ β̇

(α ξβγ)β̇γ̇ +
1

3
εγα∇ β̇

(µ ξ
µ

β) β̇γ̇
+

1

3
εγβ∇ β̇

(α ξ µ

µ) β̇γ̇

)
∇γγ̇(σ)ψβ

= ∇ γ̇
(α ξβγ)β̇γ̇∇

ββ̇(σ)ψγ − 1

6
∇ β̇
γ ξ

γ

β β̇γ̇
∇ γ̇
α (σ)ψβ − 1

6
∇ β̇
γ ξ

γ

α β̇γ̇
∇ γ̇
β (σ)ψβ

= ∇ γ̇
(α ξβγ)β̇γ̇∇

ββ̇(σ)ψγ +
1

3
∇ β̇

(α (σ)∇γγ̇(ξβ)γβ̇γ̇)ψ
β (C.52)

∇γγ̇(σ)∇ (α̇
β ξβγβ̇)γ̇χβ̇

=

(
∇ (α̇
β ξβγβ̇γ̇) +

1

3
εγ̇α̇∇ (µ̇

β ξ
βγβ̇)

µ̇ +
1

3
εγ̇β̇∇ (α̇

β ξ
βγµ̇)

µ̇

)
∇γγ̇(σ)χβ̇

= ∇ (α̇
γ ξβγβ̇γ̇)∇ββ̇(σ)χγ̇ −

1

6
∇ γ̇
β ξ

βγβ̇
γ̇∇ α̇

γ (σ)χβ̇ −
1

6
∇ γ̇
β ξ

βγα̇
γ̇∇ β̇

γ (σ)χβ̇

= ∇ (α̇
γ ξβγβ̇γ̇)∇ββ̇(σ)χγ̇ +

1

3
∇ (α̇
β (σ)∇γγ̇ξ

βγβ̇)γ̇χβ̇ (C.53)

Putting the past few results back into equation C.44,

D′(2)Ψ′ =
(

1 +
3

2
σ
)
D(2)Ψ +

(16

3
− 6A

)
ξβγβ̇γ̇∇ββ̇(σ)∇γγ̇Ψ

+
(3

2
− 6B + C

)
ξβγβ̇γ̇∇ββ̇∇γγ̇(σ)Ψ +

(3A

2
− 10B

)
∇γγ̇(ξ

βγβ̇γ̇)∇ββ̇(σ)Ψ

+

[(4

3
− 6D

)
∇ γ̇

(α ξβγ)β̇γ̇∇
ββ̇(σ)ψγ + (A− 4D)∇ β̇

(α (σ)∇γγ̇ξβ)γβ̇γ̇ψ
β

+ (1 +G− 6D)∇ β̇
(α ∇

γγ̇(σ)ξβ)γβ̇γ̇ψ
β,(4

3
− 6H

)
∇ (α̇
γ ξβγβ̇γ̇)∇ββ̇(σ)χγ̇ + (A− 4H)∇ (α̇

β (σ)∇γγ̇ξ
βγβ̇)γ̇χβ̇

+ (1 + I − 6H)∇ (α̇
β ∇γγ̇(σ)ξβγβ̇)γ̇χβ̇

]T
. (C.54)
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Therefore, D′(2)Ψ′ =
(
1 + 3

2
σ
)
D(2)Ψ if and only if 16/3 − 6A = 0, 3/2 − 6B + C = 0,

3A/2− 10B = 0, 4/3− 6D = 0, A− 4D = 0, 1 +G− 6D = 0, 4/3− 6H = 0, A− 4H = 0 and
1 + I − 6H = 0.
That is, D′(2)Ψ′ =

(
1 + 3

2
σ
)
D(2)Ψ if and only if A = 8/9, B = 2/15, C = −7/10, D = 2/9,

G = 1/3, H = 2/9 and I = 1/3.
Then, by equation C.25, the only candidate for a 2nd order symmetry of the Dirac operator is

D(2) = ξαβα̇β̇∇αα̇∇ββ̇ +
2

3
∇(α

β̇
ξβγ)α̇β̇∇αα̇Mβγ +

2

3
∇ (α̇
β ξαββ̇γ̇)∇αα̇M β̇γ̇ +

8

9
∇ββ̇(ξαβα̇β̇)∇αα̇

+

(
2

9
∇(α

α̇∇γβ̇ξ
β)γα̇β̇ +

1

3
E

(α

γα̇β̇
ξβ)γα̇β̇

)
Mαβ

+

(
2

9
∇ (α̇
α ∇βγ̇ξ

αββ̇)γ̇ +
1

3
E

(α̇
αβγ̇ ξαββ̇)γ̇

)
M α̇β̇ +

2

15
∇αα̇∇ββ̇(ξαβα̇β̇)− 7

10
Eαβα̇β̇ξ

αβα̇β̇ .

(C.55)

I can now continue simplifying equation C.19,

γa∇aD
(2)Ψ =

[
1

3
∇β

(α̇ξαββ̇γ̇)C
α̇β̇γ̇µ̇χµ̇ +

1

3
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇χ
α̇ +

2

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)χα̇

+ ξβγβ̇γ̇[∇αα̇,∇ββ̇∇γγ̇]χ
α̇ +∇αα̇(ξβα̇β̇γ̇)∇ββ̇χγ̇ +∇αα̇(ξββ̇)∇ββ̇χ

α̇

+ ξββ̇[∇αα̇,∇ββ̇]χα̇ +∇αα̇(ξβ̇γ̇M β̇γ̇χ
α̇ + ξχα̇),

1

3
∇(α

β̇
ξβγ)α̇β̇Cαβγµψ

µ +
1

3
Eα

γβ̇γ̇
∇ (α̇
β ξβγβ̇γ̇)ψα +

2

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)ψα

+ ξβγβ̇γ̇[∇αα̇,∇ββ̇∇γγ̇]ψα +∇αα̇(ξ βγβ̇
α )∇ββ̇ψγ +∇αα̇(ξββ̇)∇ββ̇ψα

+ ξββ̇[∇αα̇,∇ββ̇]ψα +∇αα̇(ξβγMβγψα + ξψα)

]T
=

[
ψ′α
χ′α̇

]
say, (C.56)

but with ξαβγα̇, ξαα̇β̇γ̇, ξαα̇, ξαβ, ξα̇β̇ and ξ all determined. Since D(2) and Ψ both have complete
symmetry between dotted and undotted indices, if I simplify the first two components of
equation C.56 - or ψ′α as I have called them - to get the first two components of equation C.2,
then it automatically follows that the second two components of equation C.56 - or χ′α̇ as I
have called them - simplify to the second two components of equation C.2.
Therefore, I will continue the proof only for3 ψ′α.

ξβγβ̇γ̇[∇αα̇,∇ββ̇∇γγ̇]χ
α̇

= ξβγβ̇γ̇∇ββ̇[∇αα̇,∇γγ̇]χ
α̇ + ξβγβ̇γ̇[∇αα̇,∇ββ̇]∇γγ̇χ

α̇

= ξβγβ̇γ̇∇ββ̇(R µ̇ν̇
αα̇γγ̇ M µ̇ν̇χ

α̇) + ξβγβ̇γ̇(R µν

αα̇ββ̇
Mµν +R µ̇ν̇

αα̇ββ̇
M µ̇ν̇)∇γγ̇χ

α̇

= ξβγβ̇γ̇(∇ββ̇(R µ̇α̇
αα̇γγ̇ χµ̇) +R µ

αα̇ββ̇γ
∇µγ̇χ

α̇ +R µ̇

αα̇ββ̇γ̇
∇γµ̇χ

α̇ +R α̇µ̇

αα̇ββ̇
∇γγ̇χµ̇)

= ξβγβ̇γ̇(∇ββ̇((εαγC
µ̇α̇

α̇γ̇ + εα̇γ̇E
µ̇α̇

αγ + εαγ(δ
µ̇
α̇δ

α̇
γ̇ + δµ̇γ̇δ

α̇
α̇)F )χµ̇)

+ (εα̇β̇C
µ

αβγ + εαβE
µ

γ α̇β̇
+ εα̇β̇(−εαγδµβ − δ

µ
αεβγ)F )∇µγ̇χ

α̇

+ (εαβC
µ̇

α̇β̇γ̇
+ εα̇β̇E

µ̇
αβγ̇ + εαβ(−δµ̇α̇εβ̇γ̇ − δ

µ̇

β̇
εα̇γ̇)F )∇γµ̇χ

α̇

+ (εαβC
α̇µ̇

α̇β̇
+ εα̇β̇E

α̇µ̇
αβ + εαβ(δα̇α̇δ

µ̇

β̇
+ δα̇

β̇
δµ̇α̇)F )∇γγ̇χµ̇) (C.57)

3Really, I could have focused on just two components right from the start, rather than carrying all four
components. However, I have chosen to be pedantic in waiting until I have explicitly shown that D(2) has full
symmetry between dotted and undotted indices.
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ξβγβ̇γ̇[∇αα̇,∇ββ̇∇γγ̇]χ
α̇

= ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇χ
α̇)− 3ξαβα̇β̇∇

ββ̇(Fχα̇) + ξβγ γ̇
α̇ C µ

αβγ ∇µγ̇χ
α̇ + ξ ββ̇γ̇

α E γ

β α̇β̇
∇γγ̇χ

α̇

− ξαβα̇β̇F∇
ββ̇χα̇ + ξ γβ̇γ̇

α C µ̇

α̇β̇γ̇
∇γµ̇χ

α̇ + ξβγ γ̇
α̇ E µ̇

αβγ̇ ∇γµ̇χ
α̇ − ξαβα̇β̇F∇

ββ̇χα̇

+ ξβγ γ̇
α̇ E α̇β̇

αβ ∇γγ̇χβ̇ − 3ξαβα̇β̇F∇
γγ̇χβ̇

= ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)χ
α̇ + ξβγβ̇γ̇Eαγα̇γ̇∇ββ̇χ

α̇ − 3ξαβα̇β̇∇
ββ̇(F )χα̇ − 8ξαβα̇β̇F∇

ββ̇χα̇

+ ξβγ γ̇
α̇ C µ

αβγ ∇µγ̇χ
α̇ + ξ ββ̇γ̇

α E γ

β α̇β̇
∇γγ̇χ

α̇ + ξ γβ̇γ̇
α C µ̇

α̇β̇γ̇
∇γµ̇χ

α̇

+ ξβγ γ̇
α̇ E µ̇

αβγ̇ ∇γµ̇χ
α̇ + ξβγ γ̇

α̇ E α̇β̇
αβ ∇γγ̇χβ̇ (C.58)

ξββ̇[∇αα̇,∇ββ̇]χα̇ = ξββ̇R µ̇ν̇

αα̇ββ̇
M µ̇ν̇χ

α̇

= ξββ̇R α̇µ̇

αα̇ββ̇
χµ̇

= ξββ̇(εαβC
α̇µ̇

α̇β̇
+ εα̇β̇E

α̇µ̇
αβ + εαβ(δα̇α̇δ

µ̇

β̇
+ δα̇

β̇
δµ̇α̇)F )χµ̇

= ξββ̇Eαβα̇β̇χ
α̇ − 3ξαα̇Fχ

α̇

=
8

9
∇γγ̇(ξ

βγβ̇γ̇)Eαβα̇β̇χ
α̇ − 8

3
∇ββ̇(ξαβα̇β̇)Fχα̇ (C.59)

∇αα̇((ξβ̇γ̇M β̇γ̇ + ξ)χα̇) = ∇αα̇(ξα̇β̇χβ̇ + ξχα̇)

= ξα̇β̇∇αα̇χβ̇ +∇αα̇(ξα̇β̇)χβ̇ +∇αα̇(ξ)χα̇ + ξ∇αα̇χ
α̇

= ξα̇β̇∇αα̇χβ̇ +∇αα̇(ξα̇β̇)χβ̇ +∇αα̇(ξ)χα̇ (C.60)

Putting the past few results back into equation C.56,

ψ′α =
1

3
∇β

(α̇ξαββ̇γ̇)C
α̇β̇γ̇µ̇χµ̇ +

1

3
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇χ
α̇ +

2

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)χα̇

+ ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)χ
α̇ + ξβγβ̇γ̇Eαγα̇γ̇∇ββ̇χ

α̇ − 3ξαβα̇β̇∇
ββ̇(F )χα̇ − 8ξαβα̇β̇F∇

ββ̇χα̇

+ ξβγ γ̇
α̇ C µ

αβγ ∇µγ̇χ
α̇ + ξ ββ̇γ̇

α E γ

β α̇β̇
∇γγ̇χ

α̇ + ξ γβ̇γ̇
α C µ̇

α̇β̇γ̇
∇γµ̇χ

α̇ + ξβγ γ̇
α̇ E µ̇

αβγ̇ ∇γµ̇χ
α̇

+ ξβγ γ̇
α̇ E α̇β̇

αβ ∇γγ̇χβ̇ +∇αα̇(ξβα̇β̇γ̇)∇ββ̇χγ̇ +∇αα̇(ξββ̇)∇ββ̇χ
α̇ +

8

9
∇γγ̇(ξ

βγβ̇γ̇)Eαβα̇β̇χ
α̇

− 8

3
∇ββ̇(ξαβα̇β̇)Fχα̇ + ξα̇β̇∇αα̇χβ̇ +∇αα̇(ξα̇β̇)χβ̇ +∇αα̇(ξ)χα̇

=
1

3
∇β

(α̇ξαββ̇γ̇)C
α̇β̇γ̇µ̇χµ̇ +

1

3
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇χ
α̇ +

10

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)χα̇

+ ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)χ
α̇ + 2ξβγβ̇γ̇Eαγα̇γ̇∇ββ̇χ

α̇ − 3ξαβα̇β̇∇
ββ̇(F )χα̇ − 8ξαβα̇β̇F∇

ββ̇χα̇

+ ξβγ γ̇
α̇ C µ

αβγ ∇µγ̇χ
α̇ + ξ ββ̇γ̇

α E γ

β α̇β̇
∇γγ̇χ

α̇ + ξ γβ̇γ̇
α C µ̇

α̇β̇γ̇
∇γµ̇χ

α̇ + ξβγ γ̇
α̇ E µ̇

αβγ̇ ∇γµ̇χ
α̇

+∇αα̇(ξβα̇β̇γ̇)∇ββ̇χγ̇ +∇αα̇(ξββ̇)∇ββ̇χ
α̇ − 8

3
∇ββ̇(ξαβα̇β̇)Fχα̇ + ξα̇β̇∇αα̇χβ̇

+∇αα̇(ξα̇β̇)χβ̇ +∇αα̇(ξ)χα̇ . (C.61)

Exactly as I did in the other long calculations in my thesis, I will proceed by removing/simplifying
terms without a curvature factor on them.

∇αα̇(ξβα̇β̇γ̇)∇ββ̇χγ̇ = ∇ α̇
α (ξβα̇β̇γ̇)∇

ββ̇χγ̇

= ∇ α̇
(α ξβ)α̇β̇γ̇∇

ββ̇χγ̇ +
1

2
εαβ∇γα̇(ξγα̇β̇γ̇)∇

ββ̇χγ̇ (C.62)
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∇αα̇(ξββ̇)∇ββ̇χ
α̇ = ∇αα̇(ξββ̇)∇ββ̇χα̇

= ∇αγ̇(ξββ̇)∇ββ̇χγ̇

=
(
∇(α(γ̇ξβ)β̇) +

1

2
εαβ∇µ

(γ̇ξµβ̇) +
1

2
εγ̇β̇∇

µ̇
(α ξβ)µ̇

+
1

4
εαβεγ̇β̇∇

µµ̇(ξµµ̇)
)
∇ββ̇χγ̇

=

(
∇(α(γ̇ξβ)β̇) +

1

2
εαβ∇µ

(γ̇ξµβ̇)

)
∇ββ̇χγ̇ as ∇β

γ̇χ
γ̇ = 0 (C.63)

ξα̇β̇∇αα̇χβ̇ = εαβξβ̇γ̇∇
ββ̇χγ̇ (C.64)

Together,

∇αα̇(ξβα̇β̇γ̇)∇ββ̇χγ̇ +∇αα̇(ξββ̇)∇ββ̇χ
α̇ + ξα̇β̇∇αα̇χβ̇

=

(
∇ α̇

(α ξβ)α̇β̇γ̇ +∇(α(γ̇ξβ)β̇) + εαβ

(
1

2
∇γα̇(ξγα̇β̇γ̇) +

1

2
∇µ

(γ̇ξµβ̇) + ξβ̇γ̇

))
∇ββ̇χγ̇ , (C.65)

thus collating all terms in equation C.61 with a derivative on χ, but no curvature factor.

1

2
∇γα̇(ξγα̇β̇γ̇) +

1

2
∇µ

(γ̇ξµβ̇) + ξβ̇γ̇

= −1

3
∇γα̇∇µ

(α̇ξγµβ̇γ̇) +
4

9
∇µ

(γ̇∇
γα̇ξµγβ̇)α̇ −

2

9
∇γ

(β̇
∇µα̇ξγµγ̇)α̇ −

1

3
Eγµµ̇

(β̇
ξγµγ̇)µ̇

= −1

3
∇γα̇∇µ

(β̇
ξγµγ̇α̇) +

2

9
∇µ

(β̇
∇γα̇ξγµγ̇)α̇ −

1

3
Eγµα̇

(β̇
ξγµγ̇)α̇ (C.66)

[∇µ

β̇
,∇γα̇]ξγµγ̇α̇

= (Rµ γα̇νρ

β̇
Mνρ +Rµ γα̇ν̇ρ̇

β̇
M ν̇ρ̇)ξγµγ̇α̇

= Rµ γα̇ ν

β̇ γ
ξνµγ̇α̇ +Rµ γα̇ ν

β̇ µ
ξγνγ̇α̇ +Rµ γα̇ ν̇

β̇ γ̇
ξγµν̇α̇ +Rµ γα̇ ν̇

β̇ α̇
ξγµγ̇ν̇

= (−δα̇
β̇
Cµγ ν

γ + εγµE ν α̇
γ β̇

− δα̇
β̇
(δµγε

νγ + δγγε
νµ)F )ξνµγ̇α̇

+ (−δα̇
β̇
Cµγ ν

µ + εγµE ν α̇
µ β̇

− δα̇
β̇
(δµµε

νγ + δγµε
νµ)F )ξγνγ̇α̇

+ (εγµC α̇ ν̇
β̇ γ̇
− δα̇

β̇
Eµγ ν̇

γ̇ + εγµ(εβ̇γ̇ε
ν̇α̇ − δν̇

β̇
δα̇γ̇ )F )ξγµν̇α̇

+ (εγµC α̇ ν̇
β̇ α̇
− δα̇

β̇
Eµγ ν̇

α̇ + εγµ(εβ̇α̇ε
ν̇α̇ − δν̇

β̇
δα̇α̇)F )ξγµγ̇ν̇

= −2Eγµα̇

(β̇
ξγµγ̇)α̇ (C.67)

Therefore, [∇µ

(β̇
,∇γα̇]ξγµγ̇)α̇ = −2Eγµα̇

(β̇
ξγµγ̇)α̇ and

1

2
∇γα̇(ξγα̇β̇γ̇) +

1

2
∇µ

(γ̇ξµβ̇) + ξβ̇γ̇

= −1

3
∇γα̇∇µ

(β̇
ξγµγ̇α̇) +

2

9
∇γα̇∇µ

(β̇
ξγµγ̇)α̇ −

7

9
Eγµα̇

(β̇
ξγµγ̇)α̇ . (C.68)

∇γα̇∇µ

(β̇
ξγµγ̇)α̇

= ∇γα̇∇µ

(β̇
ξγµγ̇α̇) +

1

3
εα̇β̇∇

γα̇∇µ
(µ̇ξ

µ̇
γµγ̇) +

1

3
εα̇γ̇∇γα̇∇µ

(β̇
ξ µ̇
γµµ̇)

= ∇γα̇∇µ

(β̇
ξγµγ̇α̇) +

1

6
∇γ

β̇
∇µα̇ξγµγ̇α̇ +

1

6
∇γ

γ̇∇µα̇ξγµβ̇α̇

= ∇γα̇∇µ

(β̇
ξγµγ̇α̇) +

1

3
∇µ

(β̇
∇γα̇ξγµγ̇)α̇

=⇒ 1

2
∇γα̇(ξγα̇β̇γ̇) +

1

2
∇µ

(γ̇ξµβ̇) + ξβ̇γ̇ = −Eγµα̇

(β̇
ξγµγ̇)α̇ (C.69)
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Next consider ∇ α̇
(α ξβ)α̇β̇γ̇ +∇(α(γ̇ξβ)β̇).

∇ α̇
(α ξβ)α̇β̇γ̇ +∇(α(γ̇ξβ)β̇)

= −2

3
∇ α̇

(α ∇
γ
(γ̇ξβ)γβ̇α̇) +

8

9
∇(α(γ̇∇γα̇ξβ)γβ̇)α̇

= −2

3
∇ α̇

(α ∇
γ
(γ̇ξβ)γβ̇α̇) +

8

9
∇γα̇∇(α(γ̇ξβ)γβ̇)α̇ +

8

9
[∇(α(γ̇,∇γα̇]ξβ)γβ̇)α̇ (C.70)

∇γα̇∇(α(γ̇ξβ)γβ̇)α̇

= ∇γα̇∇(α(γ̇ξβγ)β̇α̇) +
1

3
εγα∇γα̇∇(µ(γ̇ξ

µ

β) β̇α̇)
+

1

3
εγβ∇γα̇∇(α(γ̇ξ

µ

µ) β̇α̇)

+
1

3
εα̇γ̇∇γα̇∇(α(µ̇ξ

µ̇

βγ)β̇)
+

1

3
εα̇β̇∇

γα̇∇(α(γ̇ξ
µ̇

βγ)µ̇) +
1

9
εγαεα̇γ̇∇γα̇∇(µ(µ̇ξ

µ µ̇

β) β̇)

+
1

9
εγαεα̇β̇∇

γα̇∇(µ(γ̇ξ
µ µ̇

β) µ̇) +
1

9
εγβεα̇γ̇∇γα̇∇(α(µ̇ξ

µ µ̇

µ) β̇)
+

1

9
εγβεα̇β̇∇

γα̇∇(α(γ̇ξ
µ µ̇

µ) µ̇)

=
1

6
∇ α̇
α ∇

γ
(γ̇ξβγβ̇α̇) +

1

6
∇ α̇
β ∇

γ
(γ̇ξαγβ̇α̇) +

1

6
∇γ

γ̇∇ α̇
(α ξβγ)β̇α̇ +

1

6
∇γ

β̇
∇ α̇

(α ξβγ)γ̇α̇

+
1

36
∇αγ̇∇γα̇ξβγβ̇α̇ +

1

36
∇αβ̇∇

γα̇ξβγγ̇α̇ +
1

36
∇βγ̇∇γα̇ξαγβ̇α̇ +

1

36
∇ββ̇∇

γα̇ξαγγ̇α̇

=
1

3
∇ α̇

(α ∇
γ
(γ̇ξβ)γβ̇α̇) +

1

3
∇γ

(γ̇∇
α̇

(α ξβγ)β̇)α̇ +
1

9
∇γα̇∇(α(γ̇ξβ)γβ̇)α̇ +

1

9
[∇(α(γ̇,∇γα̇]ξβ)γβ̇)α̇ (C.71)

=⇒ ∇ α̇
(α ξβ)α̇β̇γ̇ +∇(α(γ̇ξβ)β̇)

= −1

3
∇ α̇

(α ∇
γ
(γ̇ξβ)γβ̇α̇) +

1

3
∇γ

(γ̇∇
α̇

(α ξβγ)β̇)α̇ + [∇(α(γ̇,∇γα̇]ξβ)γβ̇)α̇ (C.72)

∇γ
(γ̇∇

α̇
(α ξβγ)β̇)α̇

= ∇γ
(γ̇∇

α̇
(α ξβ)γβ̇)α̇ −

1

3
εγα∇γ

(γ̇∇
α̇

(µ ξ µ

β) β̇)α̇
− 1

3
εγβ∇γ

(γ̇∇
α̇

(α ξ µ

µ) β̇)α̇

= ∇γ
(γ̇∇

α̇
(α ξβ)γβ̇α̇) +

1

3
εα̇γ̇∇γ

(µ̇∇
α̇

(α ξ µ̇

β)γβ̇)
+

1

3
εα̇β̇∇

γ
(γ̇∇

α̇
(α ξ µ̇

β)γµ̇) −
1

6
∇α(γ̇∇γα̇ξβγβ̇)α̇

− 1

6
∇β(γ̇∇γα̇ξαγβ̇)α̇

= ∇ α̇
(α ∇

γ
(γ̇ξβ)γβ̇α̇) + [∇γ

(γ̇,∇
α̇

(α ]ξβ)γβ̇α̇) +
1

6
∇γα̇∇(αγ̇ξβ)γβ̇α̇ +

1

6
∇γα̇∇(αβ̇ξβ)γγ̇α̇

− 1

3
∇(α(γ̇∇γα̇ξβ)γβ̇)α̇

= ∇ α̇
(α ∇

γ
(γ̇ξβ)γβ̇α̇) + [∇γ

(γ̇,∇
α̇

(α ]ξβ)γβ̇α̇) +
1

3
∇γα̇∇(α(γ̇ξβ)γβ̇)α̇ −

1

3
∇(α(γ̇∇γα̇ξβ)γβ̇)α̇

= ∇ α̇
(α ∇

γ
(γ̇ξβ)γβ̇α̇) + [∇γ

(γ̇,∇
α̇

(α ]ξβ)γβ̇α̇) −
1

3
[∇(α(γ̇,∇γα̇]ξβ)γβ̇)α̇ (C.73)

=⇒ ∇ α̇
(α ξβ)α̇β̇γ̇ +∇(α(γ̇ξβ)β̇) =

1

3
[∇γ

(γ̇,∇
α̇

(α ]ξβ)γβ̇α̇) +
8

9
[∇(α(γ̇,∇γα̇]ξβ)γβ̇)α̇ (C.74)

[∇αγ̇,∇γα̇]ξβγβ̇α̇

= (R γα̇µν
αγ̇ Mµν +R γα̇µ̇ν̇

αγ̇ M µ̇ν̇)ξβγβ̇α̇

= R γα̇ µ
αγ̇ β ξµγβ̇α̇ +R γα̇ µ

αγ̇ γ ξβµβ̇α̇ +R γα̇ µ̇

αγ̇ β̇
ξβγµ̇α̇ +R γα̇ µ̇

αγ̇ α̇ ξβγβ̇µ̇

= (−δα̇γ̇C
γ µ

α β − δ
γ
αE

µ α̇
β γ̇ − δ

α̇
γ̇ (εαβε

µγ − δµαδ
γ
β)F )ξµγβ̇α̇

+ (−δα̇γ̇C γ µ
α γ − δγαE

µ α̇
γ γ̇ − δα̇γ̇ (εαγε

µγ − δµαδγγ )F )ξβµβ̇α̇

+ (−δγαC
α̇ µ̇

γ̇ β̇
− δα̇γ̇E

γ µ̇

α β̇
− δγα(εγ̇β̇ε

µ̇α̇ − δµ̇γ̇δα̇β̇)F )ξβγµ̇α̇

+ (−δγαC
α̇ µ̇
γ̇ α̇ − δα̇γ̇E

γ µ̇
α α̇ − δγα(εγ̇α̇ε

µ̇α̇ − δµ̇γ̇δα̇α̇)F )ξβγβ̇µ̇ (C.75)
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[∇αγ̇,∇γα̇]ξβγβ̇α̇

= −C γµ
αβ ξγµβ̇γ̇ − E

γ α̇
β γ̇ ξαγβ̇α̇ + Fξαββ̇γ̇ − E

γ α̇
α γ̇ ξβγβ̇α̇ + 3Fξβαβ̇γ̇ − C

α̇ µ̇

γ̇ β̇
ξβαµ̇α̇ − E γ α̇

α β̇
ξβγα̇γ̇

+ Fξβαγ̇β̇ − E
γ α̇

α γ̇ ξβγα̇γ̇ + 3Fξβαβ̇γ̇

= −C γµ
αβ ξγµβ̇γ̇ − C

α̇ µ̇

γ̇ β̇
ξβαµ̇α̇ − E γ α̇

β γ̇ ξαγβ̇α̇ − E
γ α̇

α γ̇ ξβγβ̇α̇ − E
γ α̇

α β̇
ξβγα̇γ̇

− E γ α̇
α γ̇ ξβγα̇γ̇ + 8Fξαββ̇γ̇ (C.76)

=⇒ [∇(α(γ̇,∇γα̇]ξβ)γβ̇)α̇ = −C γµ
αβ ξγµβ̇γ̇ − C

α̇ µ̇

β̇ γ̇
ξαβα̇µ̇ − 4E γ α̇

(α (β̇
ξβ)γγ̇)α̇ + 8Fξαββ̇γ̇ (C.77)

[∇γ

β̇
,∇ α̇

α ]ξβγα̇γ̇

= (Rγ α̇µν

β̇α
Mµν +Rγ α̇µ̇ν̇

β̇α
M µ̇ν̇)ξβγα̇γ̇

= Rγ α̇ µ

β̇α β
ξµγα̇γ̇ +Rγ α̇ µ

β̇α γ
ξβµα̇γ̇ +Rγ α̇ µ̇

β̇α α̇
ξβγµ̇γ̇ +Rγ α̇ µ̇

β̇α γ̇
ξβγα̇µ̇

= (−δα̇
β̇
Cγ µ

αβ + δγαE
µ α̇

β β̇
− δα̇

β̇
(−δγβδ

µ
α + εαβε

µγ)F )ξµγα̇γ̇

+ (−δα̇
β̇
Cγ µ

αγ + δγαE
µ α̇

γ β̇
− δα̇

β̇
(−δγγδµα + εαγε

µγ)F )ξβµα̇γ̇

+ (δγαC
α̇ µ̇

β̇ α̇
− δα̇

β̇
Eγ µ̇

αα̇ + δγα(εβ̇α̇ε
µ̇α̇ − δµ̇

β̇
δα̇α̇)F )ξβγµ̇γ̇

+ (δγαC
α̇ µ̇

β̇ γ̇
− δα̇

β̇
Eγ µ̇

αγ̇ + δγα(εβ̇γ̇ε
µ̇α̇ − δµ̇

β̇
δα̇γ̇ )F )ξβγα̇µ̇

= −C γµ
αβ ξγµβ̇γ̇ + E γ α̇

β β̇
ξαγα̇γ̇ + Fξαββ̇γ̇ + E γ α̇

α β̇
ξβγα̇γ̇ + 3Fξαββ̇γ̇ − E

γ α̇

α β̇
ξβγα̇γ̇

− 3Fξαββ̇γ̇ + C α̇µ̇

β̇γ̇
ξαβα̇µ̇ − E γ α̇

α γ̇ ξβγα̇β̇ − Fξαββ̇γ̇
= C α̇µ̇

β̇γ̇
ξαβα̇µ̇ − C γµ

αβ ξγµβ̇γ̇ + E γ α̇

β β̇
ξαγα̇γ̇ − E γ α̇

α γ̇ ξβγα̇β̇ (C.78)

=⇒ [∇γ

β̇
,∇ α̇

(α ]ξβ)γα̇γ̇

= C α̇µ̇

β̇γ̇
ξαβα̇µ̇ − C γµ

αβ ξγµβ̇γ̇ +
1

2
E γ α̇

β β̇
ξαγα̇γ̇ +

1

2
E γ α̇

α β̇
ξβγα̇γ̇ −

1

2
E γ α̇
α γ̇ ξβγα̇β̇

− 1

2
E γ α̇
β γ̇ ξαγα̇β̇

= C α̇µ̇

β̇γ̇
ξαβα̇µ̇ − C γµ

αβ ξγµβ̇γ̇ + 2E γ α̇

(β [β̇
ξα)γγ̇]α̇ (C.79)

[∇γ
α̇,∇ α̇

α ]ξβγβ̇γ̇

= (Rγ α̇µν
α̇α Mµν +Rγ α̇µ̇ν̇

α̇α M µ̇ν̇)ξβγβ̇γ̇

= Rγ α̇ µ
α̇α β ξµγβ̇γ̇ +Rγ α̇ µ

α̇α γ ξβµβ̇γ̇ +Rγ α̇ µ̇

α̇α β̇
ξβγµ̇γ̇ +Rγ α̇ µ̇

α̇α γ̇ ξβγβ̇µ̇

= (−δα̇α̇C
γ µ
αβ + δγαE

µ α̇
β α̇ − δ

α̇
α̇(−δγβδ

µ
α + εαβε

µγ)F )ξµγβ̇γ̇

+ (−δα̇α̇Cγ µ
αγ + δγαE

µ α̇
γ α̇ − δα̇α̇(−δγγδµα + εαγε

µγ)F )ξβµβ̇γ̇

+ (δγαC
α̇ µ̇

α̇ β̇
− δα̇α̇E

γ µ̇

αβ̇
+ δγα(εα̇β̇ε

µ̇α̇ − δµ̇α̇δα̇β̇)F )ξβγµ̇γ̇

+ (δγαC
α̇ µ̇
α̇ γ̇ − δα̇α̇E

γ µ̇
αγ̇ + δγα(εα̇γ̇ε

µ̇α̇ − δµ̇α̇δα̇γ̇ )F )ξβγβ̇µ̇

= −2C γµ
αβ ξγµβ̇γ̇ − 2E γ α̇

α β̇
ξβγα̇γ̇ − 2E γ α̇

α γ̇ ξβγα̇β̇ + 8Fξαββ̇γ̇

= −2C γµ
αβ ξγµβ̇γ̇ − 4E γ α̇

α (β̇
ξβγγ̇)α̇ + 8Fξαββ̇γ̇ (C.80)

=⇒ [∇γ
α̇,∇ α̇

(α ]ξβ)γβ̇γ̇ = −2C γµ
αβ ξγµβ̇γ̇ − 4E γ α̇

(α (β̇
ξβ)γγ̇)α̇ + 8Fξαββ̇γ̇ (C.81)

=⇒ [∇γ

(β̇
,∇ α̇

(α ]ξβ)γα̇γ̇)

=
1

3
(2C α̇µ̇

β̇γ̇
ξαβα̇µ̇ − 2C γµ

αβ ξγµβ̇γ̇ + 2E γ α̇

(β [β̇
ξα)γγ̇]α̇ + 2E γ α̇

(β [γ̇ ξα)γβ̇]α̇ − 2C γµ
αβ ξγµβ̇γ̇

− 4E γ α̇

(α (β̇
ξβ)γγ̇)α̇ + 8Fξαββ̇γ̇)

=
1

3
(2C α̇µ̇

β̇γ̇
ξαβα̇µ̇ − 4C γµ

αβ ξγµβ̇γ̇ − 4E γ α̇

(α (β̇
ξβ)γγ̇)α̇ + 8Fξαββ̇γ̇) (C.82)
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Putting the results for [∇γ

(β̇
,∇ α̇

(α ]ξβ)γα̇γ̇) and [∇(α(γ̇,∇γα̇]ξβ)γβ̇)α̇ back into equation C.74,

∇ α̇
(α ξβ)α̇β̇γ̇ +∇(α(γ̇ξβ)β̇)

=
1

9
(2C α̇µ̇

β̇γ̇
ξαβα̇µ̇ − 4C γµ

αβ ξγµβ̇γ̇ − 4E γ α̇

(α (β̇
ξβ)γγ̇)α̇ + 8Fξαββ̇γ̇)

+
8

9
(−C γµ

αβ ξγµβ̇γ̇ − C
α̇ µ̇

β̇ γ̇
ξαβα̇µ̇ − 4E γ α̇

(α (β̇
ξβ)γγ̇)α̇ + 8Fξαββ̇γ̇)

= −2

3
C α̇µ̇

β̇γ̇
ξαβα̇µ̇ −

4

3
C γµ
αβ ξγµβ̇γ̇ − 4E γ α̇

(α (β̇
ξβ)γγ̇)α̇ + 8Fξαββ̇γ̇ . (C.83)

The only other terms in equation C.61 without a curvature factor are∇αα̇(ξα̇β̇)χβ̇ and∇αα̇(ξ)χα̇.

∇αα̇(ξα̇β̇)χβ̇ +∇αα̇(ξ)χα̇

=

(
− 2

9
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ −
1

3
∇ β̇
α (Eβγγ̇

(α̇ξβγβ̇)γ̇) +
2

15
∇αα̇∇ββ̇∇γγ̇(ξ

βγβ̇γ̇)

− 7

10
∇αα̇(Eβγβ̇γ̇ξ

βγβ̇γ̇)

)
χα̇ (C.84)

∇αα̇∇ββ̇∇γγ̇ξ
βγβ̇γ̇

= ∇ββ̇∇γγ̇∇αα̇ξ
βγβ̇γ̇ + [∇αα̇,∇ββ̇∇γγ̇]ξ

βγβ̇γ̇

= ∇ββ̇∇γγ̇∇αα̇ξβγβ̇γ̇ +∇ββ̇[∇αα̇,∇γγ̇]ξ
βγβ̇γ̇ + [∇αα̇,∇ββ̇]∇γγ̇ξ

βγβ̇γ̇ (C.85)

[∇αα̇,∇γγ̇]ξ
βγβ̇γ̇

= (R µν
αα̇γγ̇ Mµν +R µ̇ν̇

αα̇γγ̇ M µ̇ν̇)ξ
βγβ̇γ̇

= −R β
αα̇γγ̇ µξ

µγβ̇γ̇ −R γ
αα̇γγ̇ µξ

βµβ̇γ̇ −R β̇
αα̇γγ̇ µ̇ξ

βγµ̇γ̇ −R γ̇
αα̇γγ̇ µ̇ξ

βγβ̇µ̇

= −(εα̇γ̇C
β

αγ µ + εαγE
β
µα̇γ̇ + εα̇γ̇(−δβαεγµ − δβγεαµ)F )ξµγβ̇γ̇

− (εα̇γ̇C
γ

αγ µ + εαγE
γ
µα̇γ̇ + εα̇γ̇(−δγαεγµ − δγγεαµ)F )ξβµβ̇γ̇

− (εαγC
β̇

α̇γ̇ µ̇ + εα̇γ̇E
β̇

αγ µ̇ + εαγ(−δβ̇α̇εγ̇µ̇ − δ
β̇
γ̇εα̇µ̇)F )ξβγµ̇γ̇

− (εαγC
γ̇

α̇γ̇ µ̇ + εα̇γ̇E
γ̇

αγ µ̇ + εαγ(−δγ̇α̇εγ̇µ̇ − δ
γ̇
γ̇εα̇µ̇)F )ξβγβ̇µ̇

= −C βγµ
α ξ β̇

γµα̇ + Eβγ
α̇γ̇ ξ

β̇γ̇
αγ + Fξ β β̇

α α̇ − Eαγα̇γ̇ξβγβ̇γ̇ + 3Fξ β β̇
α α̇ − C

β̇γ̇µ̇
α̇ ξβαγ̇µ̇

+ E β̇γ̇
αγ ξβγα̇γ̇ + Fξ β β̇

α α̇ − Eαγα̇γ̇ξβγβ̇γ̇ + 3Fξ β β̇
α α̇ (C.86)

Therefore,

∇ββ̇[∇αα̇,∇γγ̇]ξ
βγβ̇γ̇

= ∇ββ̇(−C γµ
αβ ξγµα̇β̇ − C

γ̇µ̇

α̇β̇
ξαβγ̇µ̇ − 2Eγ γ̇

(α α̇ξβ)γβ̇γ̇ − 2Eγ γ̇
α (α̇ξβγβ̇)γ̇ + 8Fξαβα̇β̇) (C.87)

[∇αα̇,∇ββ̇]∇γγ̇ξ
βγβ̇γ̇

= (R µν

αα̇ββ̇
Mµν +R µ̇ν̇

αα̇ββ̇
M µ̇ν̇)∇γγ̇ξ

βγβ̇γ̇

= −R β

αα̇ββ̇ µ
∇γγ̇ξ

µγβ̇γ̇ −R β̇

αα̇ββ̇ µ̇
∇γγ̇ξ

βγµ̇γ̇

= −(εα̇β̇C
β

αβ µ + εαβE
β

µα̇β̇
+ εα̇β̇(−δβαεβµ − δ

β
βεαµ)F )∇γγ̇ξ

µγβ̇γ̇

− (εαβC
β̇

α̇β̇ µ̇
+ εα̇β̇E

β̇
αβ µ̇ + εαβ(−δβ̇α̇εβ̇µ̇ − δ

β̇

β̇
εα̇µ̇)F )∇γγ̇ξ

βγµ̇γ̇

= −2Eγ γ̇
α α̇∇ββ̇ξβγβ̇γ̇ + 6F∇ββ̇ξαβα̇β̇ (C.88)
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∇ββ̇∇γγ̇∇αα̇ξβγβ̇γ̇

= ∇ββ̇∇γγ̇∇(α(α̇ξβγ)β̇γ̇) +
1

3
εαβ∇ββ̇∇γγ̇∇µ

(α̇ξµγβ̇γ̇) +
1

3
εαγ∇ββ̇∇γγ̇∇µ

(α̇ξβµβ̇γ̇)

+
1

3
εα̇β̇∇

ββ̇∇γγ̇∇ µ̇
(α ξβγ)µ̇γ̇ +

1

3
εα̇γ̇∇ββ̇∇γγ̇∇ µ̇

(α ξβγ)β̇µ̇ +
1

9
εαβεα̇β̇∇

ββ̇∇γγ̇∇µµ̇ξµγµ̇γ̇

+
1

9
εαβεα̇γ̇∇ββ̇∇γγ̇∇µµ̇ξµγβ̇µ̇ +

1

9
εαγεα̇β̇∇

ββ̇∇γγ̇∇µµ̇ξβµµ̇γ̇

+
1

9
εαγεα̇γ̇∇ββ̇∇γγ̇∇µµ̇ξβµβ̇µ̇

=
1

3
∇ β̇
α ∇γγ̇∇β

(α̇ξβγβ̇γ̇) +
1

3
∇ββ̇∇ γ̇

α ∇
γ
(α̇ξβγβ̇γ̇) +

1

3
∇β

α̇∇γγ̇∇ β̇
(α ξβγ)β̇γ̇ +

1

3
∇ββ̇∇γ

α̇∇
γ̇

(α ξβγ)β̇γ̇

+
1

9
∇αα̇∇ββ̇∇γγ̇ξ

βγβ̇γ̇ +
1

9
∇ β̇
α ∇

γ
α̇∇βγ̇ξβγβ̇γ̇ +

1

9
∇β

α̇∇ γ̇
α ∇γβ̇ξβγβ̇γ̇

+
1

9
∇ββ̇∇αα̇∇γγ̇ξ

βγβ̇γ̇

=
2

3
∇ β̇
α ∇γγ̇∇β

(α̇ξβγβ̇γ̇) +
2

3
∇β

α̇∇γγ̇∇ β̇
(α ξβγ)β̇γ̇ +

2

9
∇αα̇∇ββ̇∇γγ̇ξ

βγβ̇γ̇ +
1

9
∇ β̇
α ∇

γ
α̇∇βγ̇ξβγβ̇γ̇

+
1

9
∇β

α̇∇ γ̇
α ∇γβ̇ξβγβ̇γ̇ +

1

3
[∇γγ̇,∇ β̇

α ]∇β
(α̇ξβγβ̇γ̇) +

1

3
[∇γγ̇,∇β

α̇]∇ β̇
(α ξβγ)β̇γ̇

+
1

9
[∇ββ̇,∇αα̇]∇γγ̇ξ

βγβ̇γ̇ (C.89)

[∇γγ̇,∇ β̇
α ]∇β

(α̇ξβγβ̇γ̇)

= (Rγγ̇ β̇µν
α Mµν +Rγγ̇ β̇µ̇ν̇

α M µ̇ν̇)∇β
(α̇ξβγβ̇γ̇)

= Rγγ̇ β̇ µ
α γ ∇

β
(α̇ξβµβ̇γ̇) +Rγγ̇ β̇ µ̇

α α̇ ∇
β
(µ̇ξβγβ̇γ̇) +Rγγ̇ β̇ µ̇

α β̇
∇β

(α̇ξβγµ̇γ̇)

+Rγγ̇ β̇ µ̇
α γ̇ ∇

β
(α̇ξβγβ̇µ̇)

= (εβ̇γ̇Cγ µ
αγ + δγαE

µγ̇β̇
γ + εβ̇γ̇(−δγγδµα + εµγεαγ)F )∇β

(α̇ξβµβ̇γ̇)

+ (δγαC
γ̇β̇ µ̇
α̇ + εβ̇γ̇Eγ µ̇

αα̇ + δγα(δγ̇α̇ε
µ̇β̇ + δβ̇α̇ε

µ̇γ̇)F )∇β
(µ̇ξβγβ̇γ̇)

+ (δγαC
γ̇β̇ µ̇

β̇
+ εβ̇γ̇Eγ µ̇

αβ̇
+ δγα(δγ̇

β̇
εµ̇β̇ + δβ̇

β̇
εµ̇γ̇)F )∇β

(α̇ξβγµ̇γ̇)

+ (δγαC
γ̇β̇ µ̇
γ̇ + εβ̇γ̇Eγ µ̇

αγ̇ + δγα(δγ̇γ̇ε
µ̇β̇ + δβ̇γ̇ε

µ̇γ̇)F )∇β
(α̇ξβγβ̇µ̇)

= E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) + C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαββ̇γ̇) (C.90)

[∇γγ̇,∇β
α̇]∇ β̇

(α ξβγ)β̇γ̇

= (Rγγ̇β µν
α̇ Mµν +Rγγ̇β µ̇ν̇

α̇ M µ̇ν̇)∇ β̇
(α ξβγ)β̇γ̇

= Rγγ̇β µ
α̇α ∇

β̇
(µ ξβγ)β̇γ̇ +Rγγ̇β µ

α̇β ∇
β̇

(α ξµγ)β̇γ̇ +Rγγ̇β µ
α̇γ ∇

β̇
(α ξβµ)β̇γ̇

+Rγγ̇β µ̇
α̇γ̇ ∇

β̇
(α ξβγ)β̇µ̇

= (δγ̇α̇C
γβ µ
α + εβγE µγ̇

α α̇ + δγ̇α̇(δγαε
µβ + εµγδβα)F )∇ β̇

(µ ξβγ)β̇γ̇

+ (δγ̇α̇C
γβ µ
β + εβγE µγ̇

β α̇ + δγ̇α̇(δγβε
µβ + εµγδββ)F )∇ β̇

(α ξµγ)β̇γ̇

+ (δγ̇α̇C
γβ µ
γ + εβγE µγ̇

γ α̇ + δγ̇α̇(δγγε
µβ + εµγδβγ )F )∇ β̇

(α ξβµ)β̇γ̇

+ (εβγC γ̇ µ̇
α̇γ̇ + δγ̇α̇E

γβ µ̇
γ̇ + εβγ(−δγ̇γ̇δ

µ̇
α̇ + εµ̇β̇εα̇γ̇)F )∇ β̇

(α ξβγ)β̇µ̇

= C βγµ
α ∇ β̇

(µ ξβγ)α̇β̇ + Eγβγ̇
α̇∇

β̇
(α ξβγ)β̇γ̇ (C.91)

[∇ββ̇,∇αα̇]∇γγ̇ξ
βγβ̇γ̇ = 2Eγ γ̇

α α̇∇ββ̇ξβγβ̇γ̇ − 6F∇ββ̇ξαβα̇β̇ from earlier. (C.92)

93



Putting the results of the last two pages together,

∇αα̇∇ββ̇∇γγ̇ξ
βγβ̇γ̇

=
2

3
∇ β̇
α ∇γγ̇∇β

(α̇ξβγβ̇γ̇) +
2

3
∇β

α̇∇γγ̇∇ β̇
(α ξβγ)β̇γ̇ +

2

9
∇αα̇∇ββ̇∇γγ̇ξ

βγβ̇γ̇ +
1

9
∇ β̇
α ∇

γ
α̇∇βγ̇ξβγβ̇γ̇

+
1

9
∇β

α̇∇ γ̇
α ∇γβ̇ξβγβ̇γ̇ +

1

3
(E γβ̇γ̇

α ∇β
(α̇ξβγβ̇γ̇) + C β̇γ̇µ̇

α̇ ∇β
(µ̇ξαββ̇γ̇)) +

1

3
(C βγµ

α ∇ β̇
(µ ξβγ)α̇β̇

+ Eγβγ̇
α̇∇

β̇
(α ξβγ)β̇γ̇) +

1

9
(2Eγ γ̇

α α̇∇ββ̇ξβγβ̇γ̇ − 6F∇ββ̇ξαβα̇β̇) +∇ββ̇(−C γµ
αβ ξγµα̇β̇

− C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ − 2Eγ γ̇

(α α̇ξβ)γβ̇γ̇ − 2Eγ γ̇
α (α̇ξβγβ̇)γ̇ + 8Fξαβα̇β̇)

− 2Eγ γ̇
α α̇∇ββ̇ξβγβ̇γ̇ + 6F∇ββ̇ξαβα̇β̇ (C.93)

=⇒ ∇αα̇∇ββ̇∇γγ̇ξ
βγβ̇γ̇

=
6

7
∇ β̇
α ∇γγ̇∇β

(α̇ξβγβ̇γ̇) +
6

7
∇β

α̇∇γγ̇∇ β̇
(α ξβγ)β̇γ̇ +

1

7
∇ β̇
α ∇

γ
α̇∇βγ̇ξβγβ̇γ̇ +

1

7
∇β

α̇∇ γ̇
α ∇γβ̇ξβγβ̇γ̇

+
3

7
(E γβ̇γ̇

α ∇β
(α̇ξβγβ̇γ̇) + C β̇γ̇µ̇

α̇ ∇β
(µ̇ξαββ̇γ̇)) +

3

7
(C βγµ

α ∇ β̇
(µ ξβγ)α̇β̇ + Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇)

− 9

7
∇ββ̇(C γµ

αβ ξγµα̇β̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ + 2Eγ γ̇

(α α̇ξβ)γβ̇γ̇ + 2Eγ γ̇
α (α̇ξβγβ̇)γ̇ − 8Fξαβα̇β̇)

− 16

7
Eγ γ̇

α α̇∇ββ̇ξβγβ̇γ̇ +
48

7
F∇ββ̇ξαβα̇β̇ (C.94)

∇ β̇
α ∇γγ̇∇β

(α̇ξβγβ̇γ̇)

= ∇ β̇
α ∇γγ̇∇β

(α̇ξβγβ̇)γ̇ −
1

3
εγ̇α̇∇ β̇

α ∇γγ̇∇β
(µ̇ξ

µ̇

βγβ̇)
− 1

3
εγ̇β̇∇

β̇
α ∇γγ̇∇β

(α̇ξ
µ̇

βγµ̇)

= ∇ β̇
α ∇γγ̇∇β

(α̇ξβγβ̇)γ̇ −
1

6
∇ β̇
α ∇

γ
α̇∇βγ̇ξβγβ̇γ̇ −

1

6
∇ β̇
α ∇

γ
α̇∇βγ̇ξβγα̇γ̇

= ∇ β̇
α ∇γγ̇∇β

(α̇ξβγβ̇)γ̇ −
1

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇

=
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ −∇
β̇
α [∇β

(α̇,∇
γγ̇]ξβγβ̇)γ̇

=
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ −∇
β̇
α ((Rβ γγ̇µν

(α̇ Mµν +Rβ γγ̇µ̇ν̇
(α̇ Mµν)ξβγβ̇)γ̇)

=
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ −∇
β̇
α (Rβ γγ̇ µ

(α̇ β ξµγβ̇)γ̇ +Rβ γγ̇ µ
(α̇ γ ξβµβ̇)γ̇ +Rβ γγ̇ µ̇

(α̇ β̇)
ξβγµ̇γ̇

+Rβ γγ̇ µ̇
(α̇ γ̇ ξβγβ̇)µ̇)

=
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ −∇
β̇
α ((−δγ̇(α̇C

βγ µ
β + εγβE µ γ̇

β (α̇ − δ
γ̇
(α̇(δββε

µγ + δγβε
µβ)F )ξµγβ̇)γ̇

+ (−δγ̇(α̇C
βγ µ
γ + εγβE µ γ̇

γ (α̇ − δ
γ̇
(α̇(δβγε

µγ + δγγε
µβ)F )ξβµβ̇)γ̇

+ (εγβC γ̇ µ̇

(α̇ β̇)
− δγ̇(α̇E

βγ µ̇

β̇)
+ εγβ(ε(α̇β̇)ε

µ̇γ̇ − δµ̇(α̇δ
γ̇

β̇)
)F )ξβγµ̇γ̇

+ (εγβC γ̇ µ̇
(α̇ γ̇ − δ

γ̇
(α̇E

βγ µ̇
γ̇ + εγβ(−εγ̇(α̇εµ̇γ̇ − δµ̇(α̇δ

γ̇
γ̇ )F )ξβγβ̇)µ̇)

=
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ + 2∇ β̇
α (Eβγγ̇

(α̇ξβγβ̇)γ̇) (C.95)

∇β
α̇∇γγ̇∇ β̇

(α ξβγ)β̇γ̇

= ∇β
α̇∇γγ̇∇ β̇

α ξβγβ̇γ̇ −
1

3
εαβ∇β

α̇∇γγ̇∇µβ̇ξµγβ̇γ̇ −
1

3
εαγ∇β

α̇∇γγ̇∇µβ̇ξβµβ̇γ̇

= ∇β
α̇∇γγ̇∇ β̇

α ξβγβ̇γ̇ −
1

3
∇αα̇∇γγ̇∇ββ̇ξβγβ̇γ̇ −

1

3
∇β

α̇∇ γ̇
α ∇γβ̇ξβγβ̇γ̇

=
2

3
∇β

α̇∇ β̇
α ∇γγ̇ξβγβ̇γ̇ −

1

3
∇αα̇∇γγ̇∇ββ̇ξβγβ̇γ̇ +∇β

α̇[∇γγ̇,∇ β̇
α ]ξβγβ̇γ̇ (C.96)
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∇β
α̇[∇γγ̇,∇ β̇

α ]ξβγβ̇γ̇

= ∇β
α̇((Rγγ̇ β̇µν

α Mµν +Rγγ̇ β̇µ̇ν̇
α Mµν)ξβγβ̇γ̇)

= ∇β
α̇(Rγγ̇ β̇ µ

α β ξµγβ̇γ̇ +Rγγ̇ β̇ µ
α γ ξβµβ̇γ̇ +Rγγ̇ β̇ µ̇

α β̇
ξβγµ̇γ̇ +Rγγ̇ β̇ µ̇

α γ̇ ξβγβ̇µ̇)

= ∇β
α̇((εβ̇γ̇Cγ µ

αβ + δγαE
µγ̇β̇

β + εβ̇γ̇(−δγβδ
µ
α + εµγεαβ)F )ξµγβ̇γ̇

+ (εβ̇γ̇Cγ µ
αγ + δγαE

µγ̇β̇
γ + εβ̇γ̇(−δγγδµα + εµγεαγ)F )ξβµβ̇γ̇

+ (δγαC
γ̇β̇ µ̇

β̇
+ εβ̇γ̇Eγ µ̇

αβ̇
+ δγα(δγ̇

β̇
εµ̇β̇ + δβ̇

β̇
εµ̇γ̇)F )ξβγµ̇γ̇

+ (δγαC
γ̇β̇ µ̇
γ̇ + εβ̇γ̇Eγ µ̇

αγ̇ + δγα(δγ̇γ̇ε
µ̇β̇ + δβ̇γ̇ε

µ̇γ̇)F )ξβγβ̇µ̇)

= ∇β
α̇(E γβ̇γ̇

β ξαγβ̇γ̇ + E γβ̇γ̇
α ξβγβ̇γ̇)

= 2∇β
α̇(E γβ̇γ̇

(α ξβ)γβ̇γ̇) (C.97)

=⇒ ∇β
α̇∇γγ̇∇ β̇

(α ξβγ)β̇γ̇

=
2

3
∇β

α̇∇ β̇
α ∇γγ̇ξβγβ̇γ̇ −

1

3
∇αα̇∇γγ̇∇ββ̇ξβγβ̇γ̇ + 2∇β

α̇(E γβ̇γ̇
(α ξβ)γβ̇γ̇)

=
2

3
∇β

(α̇∇
β̇
α ∇γγ̇ξβγβ̇)γ̇ +

1

3
εα̇β̇∇

βµ̇∇ β̇
α ∇γγ̇ξβγµ̇γ̇ −

1

3
∇αα̇∇γγ̇∇ββ̇ξβγβ̇γ̇

+ 2∇β
α̇(E γβ̇γ̇

(α ξβ)γβ̇γ̇)

=
2

3
∇β

(α̇∇
β̇
α ∇γγ̇ξβγβ̇)γ̇ +

1

3
∇ββ̇∇αα̇∇γγ̇ξβγµ̇γ̇ −

1

3
∇αα̇∇γγ̇∇ββ̇ξβγβ̇γ̇

+ 2∇β
α̇(E γβ̇γ̇

(α ξβ)γβ̇γ̇)

=
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
2

3
[∇β

(α̇,∇
β̇
α ]∇γγ̇ξβγβ̇)γ̇ +

1

3
[∇ββ̇,∇αα̇]∇γγ̇ξ

βγβ̇γ̇

+ 2∇β
α̇(E γβ̇γ̇

(α ξβ)γβ̇γ̇)

=
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
2

3
[∇β

(α̇,∇
β̇
α ]∇γγ̇ξβγβ̇)γ̇ +

2

3
Eαβα̇β̇∇γγ̇ξ

βγβ̇γ̇ − 2F∇ββ̇ξαβα̇β̇

+ 2∇β
α̇(E γβ̇γ̇

(α ξβ)γβ̇γ̇) via an earlier result (C.98)

[∇β
α̇,∇ β̇

α ]∇γγ̇ξβγβ̇γ̇

= (Rβ β̇µν
α̇α Mµν +Rβ β̇µ̇ν̇

α̇α M µ̇ν̇)∇γγ̇ξβγβ̇γ̇

= Rβ β̇ µ
α̇α β ∇

γγ̇ξµγβ̇γ̇ +Rβ β̇ µ̇

α̇α β̇
∇γγ̇ξβγµ̇γ̇

= (−δβ̇α̇C
β µ
αβ + δβαE

µ β̇
β α̇ − δ

β̇
α̇(−δββδ

µ
α + εµβεαβ)F )∇γγ̇ξµγβ̇γ̇

+ (δβαC
β̇ µ̇

α̇ β̇
− δβ̇α̇E

β µ̇

αβ̇
+ δβα(εα̇β̇ε

µ̇β̇ − δµ̇α̇δ
β̇

β̇
)F )∇γγ̇ξβγµ̇γ̇

= 0 (C.99)

[∇β

β̇
,∇ β̇

α ]∇γγ̇ξβγα̇γ̇

= (Rβ β̇µν

β̇α
Mµν +Rβ β̇µ̇ν̇

β̇α
M µ̇ν̇)∇γγ̇ξβγα̇γ̇

= Rβ β̇ µ

β̇α β
∇γγ̇ξµγα̇γ̇ +Rβ β̇ µ̇

β̇α α̇
∇γγ̇ξβγµ̇γ̇

= (−δβ̇
β̇
Cβ µ

αβ + δβαE
µ β̇

β β̇
− δβ̇

β̇
(−δββδ

µ
α + εµβεαβ)F )∇γγ̇ξµγα̇γ̇

+ (δβαC
β̇ µ̇

β̇ α̇
− δβ̇

β̇
Eβ µ̇

αα̇ + δβα(εβ̇α̇ε
µ̇β̇ − δµ̇

β̇
δβ̇α̇)F )∇γγ̇ξβγµ̇γ̇

= −2Eαβα̇β̇ + 6F∇ββ̇ξαβα̇β̇ . (C.100)
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Putting together the past page of results,

∇β
α̇∇γγ̇∇ β̇

(α ξβγ)β̇γ̇

=
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
2

3
× 1

2
(0− 2Eαβα̇β̇ + 6F∇ββ̇ξαβα̇β̇) +

2

3
Eαβα̇β̇∇γγ̇ξ

βγβ̇γ̇

− 2F∇ββ̇ξαβα̇β̇ + 2∇β
α̇(E γβ̇γ̇

(α ξβ)γβ̇γ̇)

=
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ + 2∇β
α̇(E γβ̇γ̇

(α ξβ)γβ̇γ̇) . (C.101)

∇ β̇
α ∇

γ
α̇∇βγ̇ξβγβ̇γ̇

= ∇ β̇
α ∇

β
α̇∇γγ̇ξβγβ̇γ̇

= ∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
1

2
εα̇β̇∇

β̇
α ∇βµ̇∇γγ̇ξβγµ̇γ̇

= ∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
1

2
∇αα̇∇ββ̇∇γγ̇ξ

βγβ̇γ̇ (C.102)

∇β
α̇∇ γ̇

α ∇γβ̇ξβγβ̇γ̇

= ∇β
α̇∇ β̇

α ∇γγ̇ξβγβ̇γ̇

= ∇ β̇
α ∇

β
α̇∇γγ̇ξβγβ̇γ̇ + [∇β

α̇,∇ β̇
α ]∇γγ̇ξβγβ̇γ̇

= ∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
1

2
εα̇β̇∇

β̇
α ∇βµ̇∇γγ̇ξβγµ̇γ̇ + 0 from above

= ∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
1

2
∇αα̇∇ββ̇∇γγ̇ξ

βγβ̇γ̇ (C.103)

Then, plugging equations C.95, C.101, C.102 and C.103 into C.94,

∇αα̇∇ββ̇∇γγ̇ξ
βγβ̇γ̇

=
6

7

(
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ + 2∇ β̇
α (Eβγγ̇

(α̇ξβγβ̇)γ̇)

)
+

6

7

(
2

3
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇

+ 2∇β
α̇(E γβ̇γ̇

(α ξβ)γβ̇γ̇)

)
+

1

7

(
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
1

2
∇αα̇∇ββ̇∇γγ̇ξ

βγβ̇γ̇

)
+

1

7

(
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
1

2
∇αα̇∇ββ̇∇γγ̇ξ

βγβ̇γ̇

)
+

3

7
(E γβ̇γ̇

α ∇β
(α̇ξβγβ̇γ̇) + C β̇γ̇µ̇

α̇ ∇β
(µ̇ξαββ̇γ̇)) +

3

7
(C βγµ

α ∇ β̇
(µ ξβγ)α̇β̇ + Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇)

− 9

7
∇ββ̇(C γµ

αβ ξγµα̇β̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ + 2Eγ γ̇

(α α̇ξβ)γβ̇γ̇ + 2Eγ γ̇
α (α̇ξβγβ̇)γ̇ − 8Fξαβα̇β̇)

− 16

7
Eγ γ̇

α α̇∇ββ̇ξβγβ̇γ̇ +
48

7
F∇ββ̇ξαβα̇β̇

=
10

7
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
12

7
(∇ β̇

α (Eβγγ̇
(α̇ξβγβ̇)γ̇) +∇β

α̇(E γβ̇γ̇
(α ξβ)γβ̇γ̇)) +

1

7
∇αα̇∇ββ̇∇γγ̇ξ

βγβ̇γ̇

+
3

7
(E γβ̇γ̇

α ∇β
(α̇ξβγβ̇γ̇) + C β̇γ̇µ̇

α̇ ∇β
(µ̇ξαββ̇γ̇) + C βγµ

α ∇ β̇
(µ ξβγ)α̇β̇ + Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇)

− 9

7
∇ββ̇(C γµ

αβ ξγµα̇β̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ + 2Eγ γ̇

(α α̇ξβ)γβ̇γ̇ + 2Eγ γ̇
α (α̇ξβγβ̇)γ̇ − 8Fξαβα̇β̇)

− 16

7
Eγ γ̇

α α̇∇ββ̇ξβγβ̇γ̇ +
48

7
F∇ββ̇ξαβα̇β̇ (C.104)
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Therefore,

2

15
∇αα̇∇ββ̇∇γγ̇ξ

βγβ̇γ̇

=
2

9
∇ β̇
α ∇

β
(α̇∇

γγ̇ξβγβ̇)γ̇ +
4

15
(∇ β̇

α (Eβγγ̇
(α̇ξβγβ̇)γ̇) +∇β

α̇(E γβ̇γ̇
(α ξβ)γβ̇γ̇))

+
1

15
(E γβ̇γ̇

α ∇β
(α̇ξβγβ̇γ̇) + C β̇γ̇µ̇

α̇ ∇β
(µ̇ξαββ̇γ̇) + C βγµ

α ∇ β̇
(µ ξβγ)α̇β̇ + Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇)

− 1

5
∇ββ̇(C γµ

αβ ξγµα̇β̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ + 2Eγ γ̇

(α α̇ξβ)γβ̇γ̇ + 2Eγ γ̇
α (α̇ξβγβ̇)γ̇ − 8Fξαβα̇β̇)

− 16

45
Eγ γ̇

α α̇∇ββ̇ξβγβ̇γ̇ +
16

15
F∇ββ̇ξαβα̇β̇ . (C.105)

Then, using this expression in equation C.84 results in

∇αα̇(ξα̇β̇)χβ̇ +∇αα̇(ξ)χα̇

=

(
− 1

15
∇ β̇
α (Eβγγ̇

(α̇ξβγβ̇)γ̇) +
4

15
∇β

α̇(E γβ̇γ̇
(α ξβ)γβ̇γ̇)

+
1

15
(E γβ̇γ̇

α ∇β
(α̇ξβγβ̇γ̇) + C β̇γ̇µ̇

α̇ ∇β
(µ̇ξαββ̇γ̇) + C βγµ

α ∇ β̇
(µ ξβγ)α̇β̇ + Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇)

− 1

5
∇ββ̇(C γµ

αβ ξγµα̇β̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ + 2Eγ γ̇

(α α̇ξβ)γβ̇γ̇ + 2Eγ γ̇
α (α̇ξβγβ̇)γ̇ − 8Fξαβα̇β̇)

− 16

45
Eγ γ̇

α α̇∇ββ̇ξβγβ̇γ̇ +
16

15
F∇ββ̇ξαβα̇β̇ −

7

10
∇αα̇(Eβγβ̇γ̇ξ

βγβ̇γ̇)

)
χα̇ . (C.106)

Finally, putting equations C.106, C.83, C.69 and C.65 into equation C.61 gives

ψ′α =
1

3
∇β

(α̇ξαββ̇γ̇)C
α̇β̇γ̇µ̇χµ̇ +

1

3
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇χ
α̇ +

10

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇)χα̇

+ ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)χ
α̇ + 2ξβγβ̇γ̇Eαγα̇γ̇∇ββ̇χ

α̇ − 3ξαβα̇β̇∇
ββ̇(F )χα̇ − 8ξαβα̇β̇F∇

ββ̇χα̇

+ ξβγ γ̇
α̇ C µ

αβγ ∇µγ̇χ
α̇ + ξ ββ̇γ̇

α E γ

β α̇β̇
∇γγ̇χ

α̇ + ξ γβ̇γ̇
α C µ̇

α̇β̇γ̇
∇γµ̇χ

α̇ + ξβγ γ̇
α̇ E µ̇

αβγ̇ ∇γµ̇χ
α̇

− 8

3
∇ββ̇(ξαβα̇β̇)Fχα̇ +

(
− 2

3
C α̇µ̇

β̇γ̇
ξαβα̇µ̇ −

4

3
C γµ
αβ ξγµβ̇γ̇ − 4E γ α̇

(α (β̇
ξβ)γγ̇)α̇ + 8Fξαββ̇γ̇

− εαβEγµα̇

(β̇
ξγµγ̇)α̇

)
∇ββ̇χγ̇ +

(
− 1

15
∇ β̇
α (Eβγγ̇

(α̇ξβγβ̇)γ̇) +
4

15
∇β

α̇(E γβ̇γ̇
(α ξβ)γβ̇γ̇)

+
1

15
(E γβ̇γ̇

α ∇β
(α̇ξβγβ̇γ̇) + C β̇γ̇µ̇

α̇ ∇β
(µ̇ξαββ̇γ̇) + C βγµ

α ∇ β̇
(µ ξβγ)α̇β̇ + Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇)

− 1

5
∇ββ̇(C γµ

αβ ξγµα̇β̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ + 2Eγ γ̇

(α α̇ξβ)γβ̇γ̇ + 2Eγ γ̇
α (α̇ξβγβ̇)γ̇ − 8Fξαβα̇β̇)

− 16

45
Eγ γ̇

α α̇∇ββ̇(ξβγβ̇γ̇) +
16

15
F∇ββ̇(ξαβα̇β̇)− 7

10
∇αα̇(Eβγβ̇γ̇ξ

βγβ̇γ̇)

)
χα̇ , (C.107)

thereby completing the task of removing curvature-less terms from ψ′α. This expression still
needs to to be simplified a lot to look like the 1st two components of equation C.2. Collecting

97



like terms in the last equation,

ψ′α =

(
2ξ γ γ̇

β β̇
Eαγα̇γ̇ − 8ξαβα̇β̇F + C γµ

αβ ξγµα̇β̇ + ξ γ γ̇

α β̇
Eβγα̇γ̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ + ξ γ γ̇

β α̇ Eαγβ̇γ̇

− 2

3
C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ −

4

3
C γµ
αβ ξγµα̇β̇ − 4E γ γ̇

(α (α̇ ξβ)γβ̇)γ̇ + 8Fξαβα̇β̇ − εαβE
γµγ̇

(α̇ξγµβ̇)γ̇

)
∇ββ̇χα̇

+

(
− 1

3
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇) +
1

3
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ +
10

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇) + ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)

− 3ξαβα̇β̇∇
ββ̇(F )− 8

3
∇ββ̇(ξαβα̇β̇)F − 1

15
∇ β̇
α (Eβγγ̇

(α̇ξβγβ̇)γ̇) +
4

15
∇β

α̇(E γβ̇γ̇
(α ξβ)γβ̇γ̇)

+
1

15
(E γβ̇γ̇

α ∇β
(α̇ξβγβ̇γ̇) + C β̇γ̇µ̇

α̇ ∇β
(µ̇ξαββ̇γ̇) + C βγµ

α ∇ β̇
(µ ξβγ)α̇β̇ + Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇)

− 1

5
∇ββ̇(C γµ

αβ ξγµα̇β̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ + 2Eγ γ̇

(α α̇ξβ)γβ̇γ̇ + 2Eγ γ̇
α (α̇ξβγβ̇)γ̇ − 8Fξαβα̇β̇)

− 16

45
Eγ γ̇

α α̇∇ββ̇(ξβγβ̇γ̇) +
16

15
F∇ββ̇(ξαβα̇β̇)− 7

10
∇αα̇(Eβγβ̇γ̇ξ

βγβ̇γ̇)

)
χα̇

=

(
1

3
C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ −

1

3
C γµ
αβ ξγµα̇β̇ + 2ξ γ γ̇

β β̇
Eαγα̇γ̇ + ξ γ γ̇

α β̇
Eβγα̇γ̇ + ξ γ γ̇

β α̇ Eαγβ̇γ̇

− 4E γ γ̇
(α (α̇ ξβ)γβ̇)γ̇ − εαβE

γµγ̇
(α̇ξγµβ̇)γ̇

)
∇ββ̇χα̇

+

(
− 4

15
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇) +
2

5
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ +
34

45
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇) + ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)

− 7

5
ξαβα̇β̇∇

ββ̇(F )− 1

15
∇ β̇
α (Eβγγ̇

(α̇ξβγβ̇)γ̇) +
4

15
∇β

α̇(E γβ̇γ̇
(α ξβ)γβ̇γ̇)−

7

10
∇αα̇(Eβγβ̇γ̇ξ

βγβ̇γ̇)

+
1

15
(E γβ̇γ̇

α ∇β
(α̇ξβγβ̇γ̇) + C βγµ

α ∇ β̇
(µ ξβγ)α̇β̇)

− 1

5
∇ββ̇(C γµ

αβ ξγµα̇β̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ + 2Eγ γ̇

(α α̇ξβ)γβ̇γ̇ + 2Eγ γ̇
α (α̇ξβγβ̇)γ̇)

)
χα̇

=

(
1

3
C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ −

1

3
C γµ
αβ ξγµα̇β̇ + {1}

)
∇ββ̇χα̇

+

(
− 4

15
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇) +
1

15
C βγµ
α ∇ β̇

(µ ξβγ)α̇β̇

− 1

5
∇ββ̇(C γµ

αβ ξγµα̇β̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇) + {0}

)
χα̇ say, (C.108)

i.e. {1} and {0} are a collection coefficients not involving the Weyl tensor. Since ∇ββ̇χβ̇ = 0,

{1} can be symmetrised between and α̇ and β̇. Thus,

{1} = 2ξ γ γ̇

β (β̇
Eαγα̇)γ̇ + ξ γ γ̇

α (β̇
Eβγα̇)γ̇ + ξ γ γ̇

β (α̇ Eαγβ̇)γ̇ − 4E γ γ̇
(α (α̇ ξβ)γβ̇)γ̇

− εαβEγµγ̇
(α̇ξγµβ̇)γ̇

= 2E γ γ̇
α (α̇ ξβγβ̇)γ̇ − 2E γ γ̇

(α (α̇ ξβ)γβ̇)γ̇ − εαβE
γµγ̇

(α̇ξγµβ̇)γ̇

= 2E γ γ̇
(α (α̇ ξβ)γβ̇)γ̇ + εαβE

µγ γ̇
(α̇ ξµγβ̇)γ̇ − 2E γ γ̇

(α (α̇ ξβ)γβ̇)γ̇ − εαβE
γµγ̇

(α̇ξγµβ̇)γ̇

= 0 . (C.109)
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That leaves only {0} to simplify.

{0} =
2

5
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ +
34

45
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇) + ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)−
7

5
ξαβα̇β̇∇

ββ̇(F )

− 1

15
∇ β̇
α (Eβγγ̇

(α̇ξβγβ̇)γ̇) +
4

15
∇β

α̇(E γβ̇γ̇
(α ξβ)γβ̇γ̇)−

7

10
∇αα̇(Eβγβ̇γ̇ξ

βγβ̇γ̇)

+
1

15
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) −
2

5
∇ββ̇(Eγ γ̇

(α α̇ξβ)γβ̇γ̇ + Eγ γ̇
α (α̇ξβγβ̇)γ̇)

=
2

5
Eβγγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ +
34

45
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇) + ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)−
7

5
ξαβα̇β̇∇

ββ̇(F )

− 1

15
∇ β̇
α (Eβγγ̇

(α̇)ξβγβ̇)γ̇ −
1

15
Eβγγ̇

(α̇∇
β̇
α ξβγβ̇)γ̇ +

4

15
∇β

α̇(E γβ̇γ̇
(α )ξβ)γβ̇γ̇

+
4

15
E γβ̇γ̇

(α ∇β
α̇ξβ)γβ̇γ̇ −

7

10
∇αα̇(Eβγβ̇γ̇)ξ

βγβ̇γ̇ − 7

10
Eβγβ̇γ̇∇αα̇ξβγβ̇γ̇ +

1

15
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇)

− 2

5
∇ββ̇(Eγ γ̇

(α α̇)ξβ)γβ̇γ̇ −
2

5
Eγ γ̇

(α α̇∇
ββ̇ξβ)γβ̇γ̇ −

2

5
∇ββ̇(Eγ γ̇

α (α̇)ξβγβ̇)γ̇ −
2

5
Eγ γ̇

α (α̇∇
ββ̇ξβγβ̇)γ̇

(C.110)

Eβγβ̇γ̇∇αα̇ξβγβ̇γ̇

= Eβγβ̇γ̇

(
∇(α(α̇ξβγ)β̇γ̇) +

1

3
εαβ∇µ

(α̇ξµγβ̇γ̇) +
1

3
εαγ∇µ

(α̇ξβµβ̇γ̇) +
1

3
εα̇β̇∇

µ̇
(α ξβγ)µ̇γ̇

+
1

3
εα̇γ̇∇ µ̇

(α ξβγ)β̇µ̇ +
1

9
εαβεα̇β̇∇

µµ̇ξµγµ̇γ̇ +
1

9
εαγεα̇β̇∇

µµ̇ξβµµ̇γ̇ +
1

9
εαβεα̇γ̇∇µµ̇ξµγβ̇µ̇

+
1

9
εαγεα̇γ̇∇µµ̇ξβµβ̇µ̇

)
=

2

3
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) +
2

3
Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ +
4

9
Eαβα̇β̇∇γγ̇ξ

βγβ̇γ̇ (C.111)

Hence,

{0}

= − 1

15
Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ +
4

9
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇) + ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)−
7

5
ξαβα̇β̇∇

ββ̇(F )

− 1

15
∇ β̇
α (Eβγγ̇

(α̇)ξβγβ̇)γ̇ −
1

15
Eβγγ̇

(α̇∇
β̇
α ξβγβ̇)γ̇ +

4

15
∇β

α̇(E γβ̇γ̇
(α )ξβ)γβ̇γ̇

+
4

15
E γβ̇γ̇

(α ∇β
α̇ξβ)γβ̇γ̇ −

7

10
∇αα̇(Eβγβ̇γ̇)ξ

βγβ̇γ̇ − 2

5
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) −
2

5
∇ββ̇(Eγ γ̇

(α α̇)ξβ)γβ̇γ̇

− 2

5
Eγ γ̇

(α α̇∇
ββ̇ξβ)γβ̇γ̇ −

2

5
∇ββ̇(Eγ γ̇

α (α̇)ξβγβ̇)γ̇ −
2

5
Eγ γ̇

α (α̇∇
ββ̇ξβγβ̇)γ̇ . (C.112)

Eβγγ̇
(α̇∇

β̇
α ξβγβ̇)γ̇

= Eβγγ̇
α̇∇ β̇

α ξβγβ̇γ̇ −
1

2
εα̇β̇E

βγβ̇µ̇∇ β̇
α ξβγµ̇γ̇

= Eβγγ̇
α̇∇ β̇

α ξβγβ̇γ̇ −
1

2
Eβγβ̇γ̇∇αα̇ξβγβ̇γ̇

= Eγβγ̇
α̇∇

β̇
(α ξβγ)β̇γ̇ +

1

3
εαβE

γβγ̇
α̇∇µβ̇ξµγβ̇γ̇ +

1

3
εαγE

γβγ̇
α̇∇µβ̇ξβµβ̇γ̇ −

1

3
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇)

− 1

3
Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ −
2

9
Eαβα̇β̇∇γγ̇ξ

βγβ̇γ̇ using the result above

=
2

3
Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ −
1

3
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) +
4

9
Eαβα̇β̇∇γγ̇ξ

βγβ̇γ̇ (C.113)
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{0} = −1

9
Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ +
56

135
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇) + ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)−
7

5
ξαβα̇β̇∇

ββ̇(F )

− 1

15
∇ β̇
α (Eβγγ̇

(α̇)ξβγβ̇)γ̇ +
4

15
∇β

α̇(E γβ̇γ̇
(α )ξβ)γβ̇γ̇ +

4

15
E γβ̇γ̇

(α ∇β
α̇ξβ)γβ̇γ̇

− 7

10
∇αα̇(Eβγβ̇γ̇)ξ

βγβ̇γ̇ − 17

45
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) −
2

5
∇ββ̇(Eγ γ̇

(α α̇)ξβ)γβ̇γ̇

− 2

5
Eγ γ̇

(α α̇∇
ββ̇ξβ)γβ̇γ̇ −

2

5
∇ββ̇(Eγ γ̇

α (α̇)ξβγβ̇)γ̇ −
2

5
Eγ γ̇

α (α̇∇
ββ̇ξβγβ̇)γ̇ (C.114)

E γβ̇γ̇
(α ∇β

α̇ξβ)γβ̇γ̇

= E γβ̇γ̇
α ∇β

α̇ξβγβ̇γ̇ −
1

2
εαβE

µγβ̇γ̇∇β
α̇ξµγβ̇γ̇

= E γβ̇γ̇
α ∇β

α̇ξβγβ̇γ̇ −
1

2
Eβγβ̇γ̇∇αα̇ξβγβ̇γ̇

= E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) +
1

3
εα̇β̇E

γβ̇γ̇
α ∇βµ̇ξβγµ̇γ̇ +

1

3
εα̇γ̇E

γβ̇γ̇
α ∇βµ̇ξβγβ̇µ̇ −

1

3
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇)

− 1

3
Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ −
2

9
Eαβα̇β̇∇γγ̇ξ

βγβ̇γ̇

=
2

3
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) −
1

3
Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ +
4

9
Eαβα̇β̇∇γγ̇ξ

βγβ̇γ̇ (C.115)

=⇒ {0} = −1

5
Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ +
8

15
Eαβα̇β̇∇γγ̇(ξ

βγβ̇γ̇) + ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)−
7

5
ξαβα̇β̇∇

ββ̇(F )

− 1

15
∇ β̇
α (Eβγγ̇

(α̇)ξβγβ̇)γ̇ +
4

15
∇β

α̇(E γβ̇γ̇
(α )ξβ)γβ̇γ̇ −

7

10
∇αα̇(Eβγβ̇γ̇)ξ

βγβ̇γ̇

− 1

5
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) −
2

5
∇ββ̇(Eγ γ̇

(α α̇)ξβ)γβ̇γ̇ −
2

5
Eγ γ̇

(α α̇∇
ββ̇ξβ)γβ̇γ̇

− 2

5
∇ββ̇(Eγ γ̇

α (α̇)ξβγβ̇)γ̇ −
2

5
Eγ γ̇

α (α̇∇
ββ̇ξβγβ̇)γ̇ (C.116)

Eγ γ̇
(α α̇∇

ββ̇ξβ)γβ̇γ̇ + Eγ γ̇
α (α̇∇

ββ̇ξβγβ̇)γ̇

= Eγ γ̇
α α̇∇ββ̇ξβγβ̇γ̇ + Eγ γ̇

α α̇∇ββ̇ξβγβ̇γ̇ −
1

2
εαβE

γµγ̇
α̇∇ββ̇ξµγβ̇γ̇ −

1

2
εα̇β̇E

γ γ̇µ̇
α ∇ββ̇ξβγµ̇γ̇

= 2Eαβα̇β̇∇γγ̇ξ
βγβ̇γ̇ − 1

2
Eγβγ̇

α̇∇ β̇
α ξβγβ̇γ̇ −

1

2
E γβ̇γ̇
α ∇β

α̇ξβγβ̇γ̇

= 2Eαβα̇β̇∇γγ̇ξ
βγβ̇γ̇ − 1

2
Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ −
1

6
εαβE

γβγ̇
α̇∇µβ̇ξµγβ̇γ̇ −

1

6
εαγE

γβγ̇
α̇∇µβ̇ξβµβ̇γ̇

− 1

2
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) −
1

6
εα̇β̇E

γβ̇γ̇
α ∇βµ̇ξβγµ̇γ̇ −

1

6
εα̇γ̇E

γβ̇γ̇
α ∇βµ̇ξβγβ̇µ̇

=
4

3
Eαβα̇β̇∇γγ̇ξ

βγβ̇γ̇ − 1

2
Eγβγ̇

α̇∇
β̇

(α ξβγ)β̇γ̇ −
1

2
E γβ̇γ̇
α ∇β

(α̇ξβγβ̇γ̇) (C.117)

=⇒ {0} = ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)−
7

5
ξαβα̇β̇∇

ββ̇(F )− 1

15
∇ β̇
α (Eβγγ̇

(α̇)ξβγβ̇)γ̇ +
4

15
∇β

α̇(E γβ̇γ̇
(α )ξβ)γβ̇γ̇

− 7

10
∇αα̇(Eβγβ̇γ̇)ξ

βγβ̇γ̇ − 2

5
∇ββ̇(Eγ γ̇

(α α̇)ξβ)γβ̇γ̇ −
2

5
∇ββ̇(Eγ γ̇

α (α̇)ξβγβ̇)γ̇

= ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)−
7

5
ξαβα̇β̇∇

ββ̇(F )− 7

10
∇αα̇(Eβγβ̇γ̇)ξ

βγβ̇γ̇ − 1

15
∇ β̇
α (Eβγγ̇

α̇)ξβγβ̇γ̇

+
4

15
∇β

α̇(E γβ̇γ̇
α )ξβγβ̇γ̇ −

2

5
∇ββ̇(Eγ γ̇

α α̇)ξβγβ̇γ̇ −
2

5
∇ββ̇(Eγ γ̇

α α̇)ξβγβ̇γ̇

+
1

30
εα̇β̇∇

β̇
α (Eβγγ̇µ̇)ξβγµ̇γ̇ −

2

15
εαβ∇β

α̇(Eµγβ̇γ̇)ξµγβ̇γ̇ +
1

5
εαβ∇ββ̇(Eγµγ̇

α̇)ξµγβ̇γ̇

+
1

5
εα̇β̇∇

ββ̇(Eγ γ̇µ̇
α )ξβγµ̇γ̇ (C.118)
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{0} = ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)−
7

5
ξαβα̇β̇∇

ββ̇(F )− 7

10
∇αα̇(Eβγβ̇γ̇)ξ

βγβ̇γ̇ − 1

15
∇αβ̇(Eβγα̇γ̇)ξ

βγβ̇γ̇

+
4

15
∇βα̇(Eαγβ̇γ̇)ξ

βγβ̇γ̇ − 4

5
∇ββ̇(Eαγα̇γ̇)ξ

βγβ̇γ̇ +
1

30
∇αα̇(Eβγβ̇γ̇)ξβγβ̇γ̇

− 2

15
∇αα̇(Eβγβ̇γ̇)ξβγβ̇γ̇ +

1

5
∇αβ̇(Eβγα̇γ̇)ξ

βγβ̇γ̇ +
1

5
∇βα̇(Eαγβ̇γ̇)ξβγβ̇γ̇

= ξβγβ̇γ̇∇ββ̇(Eαγα̇γ̇)−
7

5
ξαβα̇β̇∇

ββ̇(F )− 7

10
∇αα̇(Eβγβ̇γ̇)ξ

βγβ̇γ̇ − 1

15
∇αβ̇(Eβγα̇γ̇)ξ

βγβ̇γ̇

+
4

15
∇βα̇(Eαγβ̇γ̇)ξ

βγβ̇γ̇ − 4

5
∇ββ̇(Eαγα̇γ̇)ξ

βγβ̇γ̇ +
1

30
∇αα̇(Eβγβ̇γ̇)ξβγβ̇γ̇

− 2

15
∇αα̇(Eβγβ̇γ̇)ξβγβ̇γ̇ +

1

5
∇αβ̇(Eβγα̇γ̇)ξ

βγβ̇γ̇ +
1

5
∇βα̇(Eαγβ̇γ̇)ξβγβ̇γ̇

= ξβγβ̇γ̇
(

1

5
∇ββ̇Eαγα̇γ̇ −

4

5
∇αα̇Eβγβ̇γ̇ +

2

15
∇αβ̇Eβγα̇γ̇ +

7

15
∇βα̇Eαγβ̇γ̇

)
− 7

5
ξαβα̇β̇∇

ββ̇F

= ξβγβ̇γ̇
(

1

5
∇(β(β̇Eαγ)α̇γ̇) +

1

15
εβα∇µ

(β̇
Eµγα̇γ̇) +

1

15
εβγ∇µ

(β̇
Eαµα̇γ̇) +

1

15
εβ̇α̇∇

µ̇
(β Eαγ)µ̇γ̇

+
1

15
εβ̇γ̇∇

µ̇
(β Eαγ)α̇µ̇ +

1

45
εβαεβ̇α̇∇

µµ̇Eµγµ̇γ̇ +
1

45
εβαεβ̇γ̇∇

µµ̇Eµγα̇µ̇ +
1

45
εβγεβ̇α̇∇

µµ̇Eαµµ̇γ̇

+
1

45
εβγεβ̇γ̇∇

µµ̇Eαµα̇µ̇ −
4

5
∇(α(α̇Eβγ)β̇γ̇) −

4

15
εαβ∇µ

(α̇Eµγβ̇γ̇) −
4

15
εαγ∇µ

(α̇Eβµβ̇γ̇)

− 4

15
εα̇β̇∇

µ̇
(α Eβγ)µ̇γ̇ −

4

15
εα̇γ̇∇ µ̇

(α Eβγ)β̇µ̇ −
4

45
εαβεα̇β̇∇

µµ̇Eµγµ̇γ̇ −
4

45
εαβεα̇γ̇∇µµ̇Eµγβ̇µ̇

− 4

45
εαγεα̇β̇∇

µµ̇Eβµµ̇γ̇ −
4

45
εαγεα̇γ̇∇µµ̇Eβµβ̇µ̇ +

2

15
∇(α(β̇Eβγ)α̇γ̇) +

2

45
εαβ∇µ

(β̇
Eµγα̇γ̇)

+
2

45
εαγ∇µ

(β̇
Eβµα̇γ̇) +

2

45
εβ̇α̇∇

µ̇
(α Eβγ)µ̇γ̇ +

2

45
εβ̇γ̇∇

µ̇
(α Eβγ)α̇µ̇ +

2

135
εαβεβ̇α̇∇

µµ̇Eµγµ̇γ̇

+
2

135
εαβεβ̇γ̇∇

µµ̇Eµγα̇µ̇ +
2

135
εαγεβ̇α̇∇

µµ̇Eβµµ̇γ̇ +
2

135
εαγεβ̇γ̇∇

µµ̇Eβµα̇µ̇

+
7

15
∇(β(α̇Eαγ)β̇γ̇) +

7

45
εβα∇µ

(α̇Eµγβ̇γ̇) +
7

45
εβγ∇µ

(α̇Eαµβ̇γ̇) +
7

45
εα̇β̇∇

µ̇
(β Eαγ)µ̇γ̇

+
7

45
εα̇γ̇∇ µ̇

(β Eαγ)β̇µ̇ +
7

135
εβαεα̇β̇∇

µµ̇Eµγµ̇γ̇ +
7

135
εβαεα̇γ̇∇µµ̇Eµγβ̇µ̇

+
7

135
εβγεα̇β̇∇

µµ̇Eαµµ̇γ̇ +
7

135
εβγεα̇γ̇∇µµ̇Eαµβ̇µ̇

)
− 7

5
ξαβα̇β̇∇

ββ̇F

= −2

3
ξ γβ̇γ̇
α ∇β

(α̇Eβγβ̇γ̇) −
1

3
ξγβγ̇α̇∇

β̇
(α Eβγ)β̇γ̇ −

7

15
ξαβα̇β̇∇γγ̇E

βγβ̇γ̇ − 7

5
ξαβα̇β̇∇

ββ̇F

= −2

3
ξ γβ̇γ̇
α ∇β

(α̇Eβγβ̇γ̇) −
1

3
ξγβγ̇α̇∇

β̇
(α Eβγ)β̇γ̇

= −2

3
ξ γβ̇γ̇
α ∇ µ̇

γ C α̇β̇γ̇µ̇ −
1

3
ξγβγ̇α̇∇

µ
γ̇Cαβγµ (C.119)

Substituting this result and the earlier result, {1} = 0, into equation C.108,

ψ′α =

(
1

3
C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ −

1

3
C γµ
αβ ξγµα̇β̇

)
∇ββ̇χα̇ +

(
− 4

15
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇) +
1

15
C βγµ
α ∇ β̇

(µ ξβγ)α̇β̇

− 1

5
∇ββ̇(C γµ

αβ ξγµα̇β̇ + C γ̇µ̇

α̇β̇
ξαβγ̇µ̇)− 2

3
ξ γβ̇γ̇
α ∇ µ̇

γ (C α̇β̇γ̇µ̇)− 1

3
ξγβγ̇α̇∇

µ
γ̇(Cαβγµ)

)
χα̇ .

(C.120)
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This expression can be re-written as

ψ′α =

(
1

3
C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ −

1

3
C γµ
αβ ξγµα̇β̇

)
∇ββ̇χα̇ +

(
1

15
C βγµ
α ∇ β̇

(µ ξβγ)α̇β̇ −
4

15
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇)

− 1

5
∇ββ̇(C γµ

αβ )ξγµα̇β̇ −
1

5
∇ββ̇(C γ̇µ̇

α̇β̇
)ξαβγ̇µ̇ −

1

5
C γµ
αβ ∇ββ̇(ξγµα̇β̇)− 1

5
C γ̇µ̇

α̇β̇
∇ββ̇(ξαβγ̇µ̇)

− 2

3
ξ γβ̇γ̇
α ∇ µ̇

γ (C α̇β̇γ̇µ̇)− 1

3
ξγβγ̇α̇∇

µ
γ̇(Cαβγµ)

)
χα̇

=

(
1

3
C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ −

1

3
C γµ
αβ ξγµα̇β̇

)
∇ββ̇χα̇ +

(
1

15
C βγµ
α ∇ β̇

(µ ξβγ)α̇β̇ −
4

15
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇)

+
1

5
∇β

β̇
(Cαβγµ)ξγµ β̇

α̇ +
1

5
∇ β̇
β (C α̇β̇γ̇µ̇)ξ βγ̇µ̇

α +
1

5
C βγµ
α ∇ β̇

β (ξγµα̇β̇) +
1

5
C β̇γ̇µ̇
α̇ ∇β

β̇
(ξαβγ̇µ̇)

− 2

3
ξ γβ̇γ̇
α ∇ µ̇

γ (C α̇β̇γ̇µ̇)− 1

3
ξγβγ̇α̇∇

µ
γ̇(Cαβγµ)

)
χα̇

=

(
1

3
C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ −

1

3
C γµ
αβ ξγµα̇β̇

)
∇ββ̇χα̇ +

(
1

15
C βγµ
α ∇ β̇

(µ ξβγ)α̇β̇ −
4

15
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇)

+
1

5
∇β

β̇
(Cαβγµ)ξγµ β̇

α̇ +
1

5
∇ β̇
β (C α̇β̇γ̇µ̇)ξ βγ̇µ̇

α +
1

5
C βγµ
α ∇ β̇

(β ξγµ)α̇β̇ +
1

5
C β̇γ̇µ̇
α̇ ∇β

(β̇
ξαβγ̇µ̇)

− 2

3
ξ γβ̇γ̇
α ∇ µ̇

γ (C α̇β̇γ̇µ̇)− 1

3
ξγβγ̇α̇∇

µ
γ̇(Cαβγµ)

)
χα̇

=

(
1

3
C γ̇µ̇

α̇β̇
ξαβγ̇µ̇ −

1

3
C γµ
αβ ξγµα̇β̇

)
∇ββ̇χα̇ +

(
4

15
C βγµ
α ∇ β̇

(µ ξβγ)α̇β̇ −
1

15
C β̇γ̇µ̇
α̇ ∇β

(µ̇ξαβγ̇β̇)

− 7

15
ξ γβ̇γ̇
α ∇ µ̇

γ (C α̇β̇γ̇µ̇)− 2

15
ξγβγ̇α̇∇

µ
γ̇(Cαβγµ)

)
χα̇ , (C.121)

which are the 1st two components of equation C.2. Hence, by the aforementioned symmetry
between dotted and undotted indices, the equation relating the 2nd two components of equation
C.2 also holds true - thereby completing the proof.
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Appendix D

A primer on spinors

Given the emphasis on spinors in my thesis, I thought it best to include a general mathematical
overview of them “from first principles.” My presentation here is a collation of results in [24],
[25], [26] and [27]1. My only contributions are some details of proofs omitted in [26] and [27].
For this appendix alone, rather than the specific case of 3 space and 1 time dimension, I will
work in D-dimensional spacetime with s space and t time dimensions. I will also break the
convention of presenting four-component spinors in boldface.

D.1 Arbitrary spacetimes

The study of spinors is intimately connected with the representation theory of “Clifford alge-
bras.” A Clifford algebra is a set of D objects (which can be thought of as matrices as only
their representations in finite dimensional vector spaces are relevant2), {γa}D−1a=0 , such that

{γa, γb} = γaγb + γbγa = −2ηabI , (D.1)

where ηab = diag(−1, · · · − 1, 1, · · · 1) with t minus ones, s plus ones and s+ t = D.

The first task is to study finite dimensional, complex, irreducible representations of this al-
gebra. As I will show, for questions such as the existence, uniqueness and dimension of the
irreducible representations, it suffices to study the algebra, {γa, γb} = 2δabI.
Let {γ̃a, γ̃b} = −2ηabI, γa = iγ̃a for t ≤ a ≤ D − 1 and γa = γ̃a for 0 ≤ a ≤ t− 1.
Then, for a, b ≥ t,

γaγb + γbγa = iγ̃aiγ̃b + iγ̃biγ̃a = −(γ̃aγ̃b + γ̃bγ̃a) = 2ηabI = 2δabI . (D.2)

Likewise, for a, b < t,

γaγb + γbγa = γ̃aγ̃b + γ̃bγ̃a = −2ηabI = 2δabI . (D.3)

Finally, when one of a and b is less than t and the other is greater than or equal to t,

γaγb + γbγa = i(γ̃aγ̃b + γ̃bγ̃a) = −2iηabI = 0 = 2δabI . (D.4)

Therefore, the original Clifford algebra can be transformed to one where −ηab → δab. Con-
versely, if {γa, γb} = 2δabI, then letting γ̃a = γa for 0 ≤ a ≤ t−1 and γ̃a = −iγa for t ≤ a ≤ D−1
yields {γ̃a, γ̃b} = −2ηabI.

1I have taken some proofs almost exactly as presented in these references.
2The Clifford algebra must be assumed to be associative for a matrix representation to be well defined.
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Since the two Clifford algebras are equivalent, for now consider {γa, γb} = 2δabI.

Let {γa}D−1a=0 be a finite dimensional, complex, irreducible representation of the Clifford al-
gebra, {γa, γb} = 2δabI. Denote the dimension of the representation space by N .

Let {ΓA}2
D−1
A=0 = {I, γa, γaγb with a < b, γaγbγc with a < b < c, · · · , γ0 · · · γD−1}. By definition,

all the ΓA are N ×N matrices.
γaγb + γbγa = 2δabI =⇒ (γa)

2 = I and γaγb = −γbγa for a 6= b. Thus,

(ΓA)2 = γa1 · · · γanγa1 · · · γan for some 0 ≤ n ≤ D − 1 and a1 < · · · < an

= γa1γa1(−1)n−1γa2 · · · γanγa2 · · · γan
= (−1)n−1γa2 · · · γanγa2 · · · γan
= (−1)n−1+n−2+···+1I

= (−1)n(n−1)/2I (D.5)

Hence, all the ΓA are invertible and (ΓA)−1 = (−1)n(n−1)/2ΓA.

Lemma D.1. G = {±ΓA}2
D−1
A=0 is a finite group of order 2D+1 under multiplication.

Proof. That G has 2D+1 elements follows directly from the definition.
Matrix multiplication is already associative.
The identity matrix, I, is Γ0 by definition and hence in G.
(±ΓA)−1 = ±(−1)n(n−1)/2ΓA ∈ G.
All that is left to show is that multiplication is a well defined binary operation on G.
Let ΓA = γa1 · · · γam and ΓB = γb1 · · · γbn =⇒ ΓAΓB = γa1 · · · γamγb1 · · · γbn .
If ai 6= bj ∀i, j, then changing the order of the γai and γbj (at the expense of some −1 factors)
to make the sequence in ascending order of indices means ΓAΓB ∈ G. If ai = bj for some i
and j, then changing the order to make them adjacent means γaiγbj = I and those two γs are
removed. This can be done until no ai and bj are equal.
Therefore, ΓAΓB ∈ G again =⇒ The binary operation is well defined. �

{γa}D−1a=0 is irreducible ⇐⇒ there is no subspace of CN invariant under all γa.
As {γa}D−1a=0 ⊂ G, the elements of G also have no common invariant subspace.
Hence the irreducible representation of the Clifford algebra automatically leads to an irre-
ducible representation of G in the same representation space.

Theorem D.2. The dimension of an irreducible representation’s representation space, N , can
only be 2bD/2c.

Proof. Let Y be an arbitrary N ×N matrix and let

S =
2D−1∑
A=0

(ΓA)−1Y ΓA . (D.6)

where I have adopted the convention of explicitly showing all summations on the A,B, . . .
indices. Then,

(ΓB)−1SΓB =
2D−1∑
A=0

(ΓB)−1(ΓA)−1Y ΓAΓB =
2D−1∑
A=0

(ΓAΓB)−1Y ΓAΓB . (D.7)
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ΓBΓA ∈ G and as ΓB is invertible, ΓA1ΓB = ±ΓA2ΓB =⇒ ΓA1 = ±ΓA2 .

Thus, {ΓAΓB}2
D−1
A=0 = {±ΓC}2

D−1
C=0 where on the RHS, a + or − is chosen for each C depending

on whether ΓAΓB = ΓC or ΓAΓB = −ΓC (hence {±ΓC}2
D−1
C=0 has only half as many elements as

the group, G). That means the equation above can be simplified to

(ΓB)−1SΓB =
2D−1∑
C=0

(±ΓC)−1Y (±ΓC) =
2D−1∑
C=0

(ΓC)−1Y ΓC = S . (D.8)

Therefore, SΓB = ΓBS ∀B.
Hence, S = λI for some λ ∈ C by Schur’s lemma. That means

λI =
2D−1∑
A=0

(ΓA)−1Y ΓA

=⇒ tr(λI) = tr

( 2D−1∑
A=0

(ΓA)−1Y ΓA

)

=⇒ λN =
2D−1∑
A=0

tr((ΓA)−1Y ΓA) =
2D−1∑
A=0

tr(ΓA(ΓA)−1Y ) = 2Dtr(Y )

=⇒ λ =
2Dtr(Y )

N
=⇒ 2Dtr(Y )

N
I =

2D−1∑
A=0

(ΓA)−1Y ΓA . (D.9)

In the last equation,

LHS =
2DYkk
N

δij =
2D

N
δklδijYkl and (D.10)

RHS =
2D−1∑
A=0

(Γ−1A )ikYkl(ΓA)lj . (D.11)

Then, since Ykl is arbitrary,

LHS = RHS =⇒ 2D

N
δklδij =

2D−1∑
A=0

(Γ−1A )ik(ΓA)lj

=⇒ 2D

N
δijδij =

2D−1∑
A=0

(Γ−1A )ii(ΓA)jj

⇐⇒ 2D =
2D−1∑
A=0

tr(ΓA)tr((ΓA)−1) . (D.12)

Let ΓA = γa1 · · · γan for some 1 ≤ n ≤ D−1 (any ΓA other than Γ0 = I and Γ2D−1 = γ0 · · · γD−1
can be written in such a form by definition).
Therefore, ∃b ∈ {0, 1, · · · , D − 1} such that b 6= ai ∀i. Then, if n is odd,

(γb)
−1ΓAγb = γbγa1 · · · γanγb

= (γb)
2(−1)nγa1 · · · γan

= (−1)nΓA

= −ΓA as n is odd. (D.13)
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Therefore,

tr((γb)
−1ΓAγb) = tr(−ΓA) ⇐⇒ tr(ΓA) = tr(−ΓA) =⇒ tr(ΓA) = 0 . (D.14)

On the other hand, if n is even,

(γa1)
−1ΓAγa1 = γa1γa1 · · · γanγa1

= γa1γa1γa1(−1)n−1γa2 · · · γan
= (−1)n−1γa1 · · · γan
= −ΓA as n is even. (D.15)

Hence, tr(ΓA) = 0 by the same logic as before.
Then, in equation D.12, the only non-traceless matrices in the sum are when A = 0 and when
A = 2D − 1. Thus,

2D = tr(I)tr(I−1) + tr(γ0 · · · γD−1)tr((γ0 · · · γD−1)−1)
= N2 + tr(γ0 · · · γD−1)tr((γ0 · · · γD−1)−1) . (D.16)

It will now be necessary to consider D even and odd separately; I will start with the former.

tr(γ0 · · · γD−1) = tr(γD−1γ0 · · · γD−2)
= tr(γ0 · · · γD−1(−1)D−1)

= tr(−γ0 · · · γD−1) as D is even (D.17)

=⇒ tr(γ0 · · · γD−1) = 0

=⇒ 2D = N2

=⇒ N = 2D/2 = 2bD/2c (D.18)

However, when D is odd,

γaγ0 · · · γD−1 = γaγ0 · · · γa−1γaγa+1 · · · γD−1
= γ0 · · · γa−1γa(−1)aγaγa+1 · · · γD−1
= γ0 · · · γa−1γa(−1)aγa+1 · · · γD−1γa(−1)D−a−1

= (−1)D−1γ0 · · · γD−1γa
= γ0 · · · γD−1γa as D is odd. (D.19)

Then, since all elements of G are products of the γs and possibly a factor of −1,
gγ0 · · · γD−1 = γ0 · · · γD−1g ∀g ∈ G.
Therefore, γ0 · · · γD−1 = λI for some λ ∈ C \ {0} by Schur’s lemma (not the same λ as before).
Thus,

2D = N2 + tr(λI)tr((λI)−1)

= N2 + (Nλ)

(
N

λ

)
= 2N2

=⇒ N = 2(D−1)/2 = 2bD/2c . (D.20)

Hence, for any dimension, D, N is uniquely determined to be 2bD/2c. �

The previous theorem uniquely determines the representation space’s dimension, but as yet I
have said nothing about the number of inequivalent representations in CN .
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Theorem D.3. For even dimensions, a finite dimensional, complex, irreducible representation
of the Clifford algebra is unique up to equivalence, where as in odd dimensions, there are two
inequivalent representations related by a factor of −1.

Proof. Let {γa}D−1a=0 and {γ̃a}D−1a=0 be two inequivalent, finite dimensional, complex irreducible
representations of the Clifford algebra. Let G and G̃ be the two corresponding finite groups
generated as before. For an arbitrary N ×N matrix, Y , this time let

S =
2D−1∑
A=0

(ΓA)−1Y Γ̃A (D.21)

=⇒ (ΓB)−1SΓ̃B =
2D−1∑
A=0

(ΓB)−1(ΓA)−1Y Γ̃AΓ̃B

=
2D−1∑
A=0

(ΓAΓB)−1Y Γ̃AΓ̃B

=
2D−1∑
C=0

(ΓC)−1Y Γ̃C

= S

⇐⇒ SΓ̃B = ΓBS ∀B (D.22)

with the 3rd last line following by the same reasoning as equation D.8. Now, since the rep-
resentations of G & G̃ are inequivalent, SΓ̃B = ΓBS =⇒ S = 0 by Schur’s 2nd lemma,
i.e.

2D−1∑
A=0

(Γ−1A )ikYkl(Γ̃A)lj = 0 . (D.23)

However, since Ykl is arbitrary, it must be that

0 =
2D−1∑
A=0

(Γ−1A )ik(Γ̃A)lj (D.24)

=⇒ 0 =
2D−1∑
A=0

(Γ−1A )ii(Γ̃A)jj

=
2D−1∑
A=0

tr((ΓA)−1)tr(Γ̃A) . (D.25)

For even D, it was shown in the proof of theorem D.2 that Γ̃0 = I is the only one of the Γ̃As
that is not traceless.
Hence, 0 = tr(I−1)tr(I) = N2 =⇒ N = 0, contradicting theorem D.2.
Therefore, for even dimensions, there could not have been two inequivalent representations to
begin with, thereby proving the 1st half of the theorem.

Meanwhile for odd D, it was shown in the proof of theorem D.2 that Γ̃0 = I and Γ̃D−1 = λ̃I
are the only non-traceless ΓAs. Hence,

0 = tr(I−1)tr(I) + tr((λI)−1)tr(λ̃I)

= N2 +
λ̃

λ
N2

⇐⇒ λ̃ = −λ . (D.26)
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Because of this result, there cannot be a 3rd inequivalent representation as follows.
Let {γ′a}D−1a=0 be a 3rd inequivalent representation. Then, considering the three representations
pairwise, λ = −λ̃, λ′ = −λ̃ and λ′ = −λ. The 1st and 3rd of these equations together imply
λ′ = λ̃, which contradicts the 2nd equation.

There could yet be two inequivalent representations though. Let γ̃a = −γa. Then,

γ̃aγ̃b + γ̃bγ̃a = (−γa)(−γb) + (−γb)(−γa) = γaγb + γbγa = 2δabI . (D.27)

Therefore, {γ̃a}D−1a=0 = {−γa}D−1a=0 also satisfies the Clifford algebra.
Assume ∃ an N ×N matrix, C, such that γ̃a = C−1γaC for a contradiction.

γ̃0 · · · γ̃D−1 = C−1γ0C · · ·C−1γD−1C
= C−1γ0 · · · γD−1C
= C−1λIC

= λI (D.28)

However, γ̃0 · · · γ̃D−1 = (−1)Dγ0 · · · γD−1 = −λI.
That means λI = −λI, which contradicts λ 6= 0.
Hence, in odd dimensions, {γa}D−1a=0 and {−γa}D−1a=0 are indeed inequivalent representations. �

Having established these properties, it is time to return to the general Clifford algebra,
{γa, γb} = −2ηabI, where the previous two theorems will continue to hold via the reasons out-
lined earlier. Spinors can now be defined as the N -component objects of CN , the representation
space of the Clifford algebra. As I will outline, these spinors will allow representations of the
spin groups (the universal covering groups of SO↑(s, t)).
From hereon, let γ0 · · · γD−1 be denoted by γD+1.

Let Λa
b ∈ SO↑(s, t) and let γ′a = (Λ−1)baγb, i.e. as if γa was a Lorentz vector. Then,

γ′aγ
′
b + γ′bγ

′
a = (Λ−1)ca(Λ

−1)db(γcγd + γdγc)

= −2ηcd(Λ
−1)ca(Λ

−1)dbI

= −2ηabI by the defining properties of SO↑(s, t) . (D.29)

Therefore {γ′a}D−1a=0 also satisfy the Clifford algebra.
In even dimensions, since the irreducible representation is unique, ∃S(Λ) such that
γ′a = S(Λ)−1γaS(Λ). However, in odd dimensions, both γ′a = S(Λ)−1γaS(Λ) and
γ′a = S(Λ)−1(−γa)S(Λ) could be possible by the previous theorem. Consider the latter case.
γD+1 = γ0 · · · γD−1 = 1

N !
εa1···aDγa1 · · · γaD by anticommutativity. Hence,

S(Λ)−1γD+1S(Λ) =
1

N !
εa1···aDS(Λ)−1γa1S(Λ) · · ·S(Λ)−1γaDS(Λ)

=
(−1)D

N !
εa1···aDγ′a1 · · · γ

′
aD

=
(−1)D

N !
εa1···aD(Λ−1)b1a1 · · · (Λ

−1)bDaDγb1 · · · γbD

=
(−1)D

N !
det(Λ−1)εb1···bDγ′b1 · · · γ

′
bD

= −γD+1 as D is odd and det(Λ−1) = 1 . (D.30)

However, I showed earlier that in odd dimensions, γD+1 = λI for some complex λ 6= 0. Thus,
the last equation says S(Λ)−1λIS(Λ) = −λI ⇐⇒ λI = −λI ⇐⇒ λ = 0, which contradicts
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λ 6= 0.
Therefore, even in odd dimensions, γ′a = S(Λ)−1γaS(Λ). Hence, in any dimension,

S(Λ1)
−1S(Λ2)

−1γaS(Λ2)S(Λ1) = S(Λ1)
−1(Λ−12 )baγbS(Λ1)

= (Λ−11 )cb(Λ
−1
2 )baγc

= ((Λ2Λ1)
−1)baγb

= S(Λ2Λ1)
−1γaS(Λ2Λ1)

⇐⇒ γaS(Λ2)S(Λ1)S(Λ2Λ1)
−1 = S(Λ2)S(Λ1)S(Λ2Λ1)

−1γa . (D.31)

Since the last equation holds ∀a, gS(Λ2)S(Λ1)S(Λ2Λ1)
−1 = S(Λ2)S(Λ1)S(Λ2Λ1)

−1g ∀g ∈ G.
By Schur’s lemma, S(Λ2)S(Λ1)S(Λ2Λ1)

−1 = f(Λ2,Λ1)I ⇐⇒ S(Λ1)S(Λ2) = f(Λ1,Λ2)S(Λ1Λ2)
for some f(Λ1,Λ2) ∈ C.
Therefore, S is a projective representation of SO↑(s, t).
In general, this is the best that can be done for SO↑(s, t). However, since
S(Λ)−1γaS(Λ) = (Λ−1)baγb is invariant under S(Λ) → βS(Λ) for any β ∈ C \ {0}, S can be
extended to a representation of Spin(s, t), the universal covering group of SO↑(s, t). In this
case, it can be shown3 S can be made into a linear representation, rather than only a projec-
tive representation. This property distinguishes the spinor representation from other tensor
representations; spinors facilitate a representation of Spin(s, t), not SO↑(s, t).
From henceforth, let S(Λ) ≡ S(N) where N is a pre-image of Λ under the covering map.

A natural way to generate a representation of Spin(s, t), is to exponentiate4 elements of
spin(s, t). Since a group and its universal cover are locally isomorphic, spin(s, t) ∼= o(s, t).
Hence, one must study the the connection between Lorentz groups and Clifford algebras at the
level of Lie algebras. To do so, let Mab = −1

4
[γa, γb]. Then,

[Mab,Mcd] =
1

16
[[γa, γb], [γc, γd]]

=
1

16
[γaγb − γbγa, γcγd − γdγc]

=
1

16
(γaγb − γbγa)(γcγd − γdγc)−

1

16
(γcγd − γdγc)(γaγb − γbγa)v

=
1

16
(γaγbγcγd − γaγbγdγc − γbγaγcγd + γbγaγdγc − γcγdγaγb + γcγdγbγa

+ γdγcγaγb − γdγcγbγa) . (D.32)

Using the Clifford algebra,

γcγdγaγb = −γcγaγdγb − 2ηadγcγb

= γaγcγdγb + 2ηacγdγb − 2ηadγcγb

= −γaγcγbγd − 2ηbdγaγc + 2ηacγdγb − 2ηadγcγb

= γaγbγcγd + 2ηbcγaγd − 2ηbdγaγc + 2ηacγdγb − 2ηadγcγb

⇐⇒ γaγbγcγd − γcγdγaγb = 2(ηadγcγb − ηacγdγb + ηbdγaγc − ηbcγaγd) . (D.33)

γcγdγbγa − γbγaγcγd, γdγcγaγb − γaγbγdγc and γbγaγdγc − γdγcγbγa follow by relabelling indices.

3I will sketch how this can be done below and in the next subsection of this appendix.
4I will have an example later in the appendix.
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Substituting these expressions,

[Mab,Mcd] =
1

8
(ηadγcγb − ηacγdγb + ηbdγaγc − ηbcγaγd

+ ηcaγbγd − ηcbγaγd + ηdaγcγb − ηdbγcγa
+ ηdbγaγc − ηdaγbγc + ηcbγdγa − ηcaγdγb
+ ηbcγdγa − ηbdγcγa + ηacγbγd − ηadγbγc)

=
1

4
(ηad[γc, γb] + ηac[γb, γd] + ηbd[γa, γc] + ηbc[γd, γa])

= ηadMbc − ηacMbd + ηbcMad − ηbdMac . (D.34)

In summary, Mab = −1
4
[γa, γb] satisfy the Lie algebra of o(3, 1), i.e. Mab are Lorentz generators.

It is now time to study the effects of these transformation properties of the Clifford alge-
bra on the properties of spinors themselves. Spinors were originally used most prominently in
physics in the context of the Dirac equation,

(iγa∇a − qγaAa(x)−m)Ψ(x) = 0 , (D.35)

where Ψ is a 2bD/2c-component spinor. To be a well defined equation of motion, the Dirac
equation must transform covariantly.
That means under a local Lorentz transformation, e′ ma (x) = (Λ−1)bae

m
b (x), the Dirac equation

must be 0 = (iγa∇′a− qγaA′a(x)−m)Ψ′(x). This equation still has γa, not γ′a, because despite
appearances, γa are supposed to be a set of constant matrices; they cannot be different for
different observers.
Since ∇a = Λb

a∇′b and Aa = Λb
aA
′
b, the original Dirac equation can be re-written as

0 = (iγa∇a − qγaAa(x)−m)Ψ(x)

= (Λb
aγ

a(i∇′b − qA′b(x))−m)Ψ(x) . (D.36)

Earlier, I showed that γ′a = (Λ−1)baγa =⇒ γ′a = S(Λ)−1γaS(Λ) for some group representation,
S(Λ). Let T (Λ) be the corresponding representation for contravariant indices,
i.e. γ′a = Λa

bγ
b =⇒ γ′a = T (Λ)−1γaT (Λ). Hence, the Dirac equation becomes

0 = (T (Λ)−1γbT (Λ)(i∇′b − qA′b(x))−m)Ψ(x)

= T (Λ)−1(γa(i∇′a − qA′a(x))−m)T (Λ)Ψ(x)

⇐⇒ 0 = (iγa∇′a − qγaA′a(x)−m)T (Λ)Ψ(x) . (D.37)

Therefore, it must be that Ψ′(x) = T (Λ)Ψ(x). This defines the transformation property of
spinors5.
If one restricts attention to special relativity, then the transformation of interest is x′a = Λa

bx
b.

Then, the Dirac equation is 0 = (iγa∂a− qγaAa(x)−m)Ψ(x) and the transformation property
required of spinors is Ψ′(x′) = T (Λ)Ψ(x), or equivalently Ψ′(x) = T (Λ)Ψ(Λ−1x).

There are still many properties of spinors left to consider. For “calculation” purposes, it
will be useful to choose a basis in the spinor/representation space of the Clifford algebra. As
G is a finite group, ∃ an inner product (that is unique up to scaling) invariant under the action
of the representation. Since scaling is arbitrary, any scaling of this unique inner product can

5Rather than take the Dirac equation as fundamental and derive spinors’ transformation properties from
there, a more mathematical perspective would be to define spinors to transform as Ψ′(x) = T (Λ)Ψ(x) and use
that to prove the Dirac equation transforms covariantly.
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be chosen. Then, choose a basis that is orthonormal with respect to this inner product.
In this basis, all γa are unitary, i.e. γ†a = (γa)

−1.
However, γaγb + γbγa = −2ηabI =⇒ (γa)

2 = −ηaaI (no sum).
Hence, (γa)

−1 = γa for 0 ≤ a ≤ t− 1 and (γa)
−1 = −γa for t ≤ a ≤ s+ t− 1.

Or equivalently, γ†a = γa for 0 ≤ a ≤ t− 1 and γ†a = −γa for t ≤ a ≤ s+ t− 1.

Theorem D.4. Let A = γ0γ1 · · · γt−1. Then, A is unitary and γ†a = (−1)t+1AγaA
−1.

Proof. For 0 ≤ a ≤ t− 1, γ†a = (γa)
−1 = γa. Then,

A†A = (γ0 · · · γt−1)†(γ0 · · · γt−1)
= γ†t−1 · · · γ

†
0γ0 · · · γt−1

= (γt−1)
−1 · · · (γ0)−1γ0 · · · γt−1

= I =⇒ A is unitary. (D.38)

For 0 ≤ b ≤ t− 1, (γb)
−1 = γb and hence A−1 = γt−1 · · · γ0.

For t ≤ a ≤ s+ t− 1,

(−1)t+1AγaA
−1 = (−1)t+1γ0 · · · γt−1γaγt−1 · · · γ0

= (−1)t−1γa(−1)tγ0 · · · γt−1γt−1 · · · γ0
= (−1)2t+1γa

= −γa
= γ†a . (D.39)

For 0 ≤ a ≤ t− 1,

(−1)t+1AγaA
−1 = (−1)t+1γ0 · · · γt−1γaγt−1 · · · γ0

= (−1)t−1γ0 · · · γt−1γaγt−1 · · · γa · · · γ0 (no sum)

= (−1)t+1γ0 · · · γt−1γt−1 · · · γa(−1)t−a−1γa · · · γ0
= (−1)2t−aγ0 · · · γaγaγaγa−1 · · · γ0
= (−1)aγ0 · · · γa−1γaγa−1 · · · γ0
= (−1)aγ0 · · · γa−1γa−1 · · · γ0γa(−1)a

= (−1)2aγa

= γa

= γ†a . (D.40)

Putting together all the cases, γ†a = (−1)t+1AγaA
−1 in general. �

To derive the next few results, restrict attention to the case of D being even.

(±γa)∗(±γb)∗ + (±γb)∗(±γa)∗ = (γaγb + γbγa)
∗

= (−2ηabI)∗

= −2ηabI (D.41)

Therefore, {±γ∗a}D−1a=0 also satisfy the Clifford algebra.
Since the irreducible representation of the Clifford algebra is unique in even dimensions,
∃ matrices, B1 and B2, such that γ∗a = B1γa(B1)

−1 and −γ∗a = B2γa(B2)
−1. These two
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equations can be wrapped together by saying γ∗a = µBγaB
−1 where µ = ±1. Here µ and B

are taken to be interdependent, e.g. if µ = 1, then B = B1 while if µ = −1, then B = B2.

γ∗a = µBγaB
−1 =⇒ γa = µB∗γ∗aB

−∗

= µB∗µBγaB
−1B−∗

= B∗Bγa(B
∗B)−1

⇐⇒ γaB
∗B = B∗Bγa ∀a (D.42)

Then, by Schur’s lemma, B∗B = νI for some ν ∈ C \ {0}.
But, BB∗ = νI as well since a matrix and its inverse commute.
Therefore, (BB∗)∗ = ν∗I =⇒ B∗B = ν∗I =⇒ νI = ν∗I =⇒ ν ∈ R \ {0}. Then,

BB∗ = νI =⇒ det(BB∗) = det(νI)

=⇒ det(B)det(B∗) = ν2
D/2

det(I)

=⇒ ν2
D/2

= |det(B)|2 . (D.43)

For any k ∈ C \ {0}, (kB)γa(kB)−1 = BγaB
−1 = γ∗a, i.e. B can be scaled without loss of

generality as its definition only relies on µBγaB
−1 = γ∗a.

I will scale B so that |det(B)| = 1.

Therefore, ν2
D/2

= 1 and hence ν = ±1.
Since γa are unitary,

I = γaγ
†
a = γa(γ

∗
a)
T = γaµB

−TγTa B
T

=⇒ I∗ = (µγaB
−TγTa B

T )∗

⇐⇒ I = µ(γaB
−TγTa B

T )∗

= µγ∗aB
−†γ†aB

†

= µ2BγaB
−1B−†γ†aB

†

= BγaB
−1B−†γ†aB

†

⇐⇒ B−†γa = BγaB
−1B−†

⇐⇒ γaB
†B = B†Bγa ∀, . (D.44)

Then, by Schur’s lemma, B†B = ρI for some ρ ∈ C \ {0}. Hence, ρ = ±1 by the exact same
reasoning by which ν was constrained to be ±1.
For any vector, v ∈ C2D/2 , v†B†Bv = v†ρIv =⇒ ||Bv||2 = ρ||v||2. Then, as ||Bv||2 ≥ 0 and
||v||2 ≥ 0, it must be that ρ ≥ 0.
Thus, ρ can only equal 1, thereby making B unitary.

Theorem D.5. Let C = BTA. Then, C is unitary and γTa = (−1)t+1µCγaC
−1.

Proof. C†C = (BTA)†BTA = A†B∗BTA = A†(BB†)∗A = A†A = I =⇒ C is unitary.
For the other part of the proof, applying theorem D.4 along the way,

γTa = (γ†a)
∗

= ((−1)t+1AγaA
−1)∗

= (−1)t+1A∗γ∗aA
−∗ . (D.45)

A∗ = (γ0 · · · γt−1)∗

= γ∗0 · · · γ∗t−1
= µBγ0B

−1 · · ·µBγt−1B−1

= µtBAB−1 =⇒ A−∗ =
1

µt
BA−1B−1 (D.46)
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Therefore,

γTa = (−1)t+1(µtBAB−1)(µBγaB
−1)

(
1

µt
BA−1B−1

)
= (−1)t+1µBAγaA

−1B−1 . (D.47)

B∗B = νI and B†B = I =⇒ B∗ = νB† =⇒ B = νBT . Thus,

γTa = (−1)t+1µνBTAγaA
−1B−T/ν

= (−1)t+1CγaC
−1 . (D.48)

�

Consider the effect of B and C on spinors in the context of the Dirac equation.

0 = (iγa∇a − qγaAa −m)Ψ

⇐⇒ 0 = (−iγa∗∇a − qγa∗Aa −m)Ψ∗

= (−iµBγaB−1∇a − qµBγaB−1Aa −m)Ψ∗

= B(−iµγa∇a − qµγaAa −m)B−1Ψ∗

⇐⇒ 0 = (−iµγa∇a − qµγaAa −m)B−1Ψ∗ (D.49)

If µ = −1, then B−1Ψ∗ satisfies the same Dirac equation as Ψ but with q → −q.
If µ = −1, then B−1Ψ∗ describes the antiparticle of the particle described by Ψ.
On the other hand, if µ = 1, then B−1Ψ∗ satisfies the same Dirac equation as Ψ but with both
q → −q and m→ −m.
When µ = −1, a particle is its own antiparticle if and only if B−1Ψ∗ = Ψ ⇐⇒ Ψ∗ = BΨ.
Therefore, Ψ = (BΨ)∗ = B∗Ψ∗ = B∗BΨ = νΨ =⇒ ν = 1.

Definition D.6. If µ = −1, ν = 1 and Ψ∗ = BΨ, then Ψ is called a Majorana spinor. If
µ = 1, ν = 1 and Ψ∗ = BΨ, then Ψ is called a pseudo-Majorana spinor.
If ν = −1 and one has two spinors, Ψi(i = 1, 2), then one can impose an “ SU(2) reality
condition,” Ψi = (Ψi)

∗ = εijBΨj. In this case, the µ = −1 and µ = 1 cases are called SU(2)
Majorana and SU(2) pseudo-Majorana spinors respectively.

The matrix, C, can also be related to antiparticles as follows. From the Dirac equation,

0 = ((iγa∇a − qγaAa −m)Ψ)†

= −i∇a(Ψ
†)(γa)† − qΨ†(γa)†Aa −mΨ†

= −i∇a(Ψ
†)(−1)t+1AγaA−1 − (−1)t+1qΨ†AγaA−1Aa −mΨ†

= (−i∇a(Ψ
†A)(−1)t+1γa − (−1)t+1qΨ†AγaAa −mΨ†)A−1 . (D.50)

Let Ψ†A = Ψ; Ψ is called the adjoint spinor. With this notation,

0 = Ψ((−1)t+1iγa
←
∇a + (−1)t+1qγaAa +m)

=⇒ 0 = ((−1)t+1i(γa)T∇a + (−1)t+1q(γa)TAa +m)ΨT

= ((−1)t+1i(−1)t+1µCγaC−1∇a + (−1)t+1q(−1)t+1µCγaC−1Aa +m)ΨT

=⇒ 0 = (iµγa∇a + qµγaAa +m)C−1ΨT (D.51)

Again, if µ = −1, then C−1ΨT describes the antiparticle of the particle described by Ψ. For
this reason, C−1ΨT is denoted ΨC and C is called the charge conjugation matrix. For reasons
unknown, B does not have a special name despite the similarity. It is however no coincidence
that B−1Ψ∗ and C−1ΨT serve the same purpose.
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Theorem D.7. B−1Ψ∗ and C−1ΨT are proportional to each other.

Proof. C−1ΨT = (BTA)−1(Ψ†A)T = A−1B−TATΨ∗ = A−1(AB−1)TΨ∗

A∗ = γ∗0 · · · γ∗t−1 = µBγ0B
−1 · · ·µBγt−1B−1 = µtBAB−1 =⇒ AB−1 = µtB−1A∗

Therefore, C−1ΨT = µtA−1A†B−TΨ∗.
However, I showed earlier that B = νBT . Thus, B−1 = νB−T ⇐⇒ B−T = νB−1 since ν2 = 1.
Meanwhile, for the other two matrices,

A−1A† = (γ0 · · · γt−1)−1(γ0 · · · γt−1)†

= γ−1t−1 · · · γ−10 γ†t−1 · · · γ
†
0

= γt−1 · · · γ0γt−1 · · · γ0
= (−1)t−1+t−2+···+1I

= (−1)t(t−1)/2I (D.52)

=⇒ C−1ΨT = νµt(−1)t(t−1)/2B−1Ψ∗ . (D.53)

�

As it happens, ν and µ are not independent.

Theorem D.8. ν is a function of µ, t and s by

ν = cos

(
π

4
(s− t)

)
− µ sin

(
π

4
(s− t)

)
. (D.54)

Proof. I have already shown BT = νB. Then, using theorems D.4 and D.5,

CT = (BTA)T

= γTt−1 · · · γT0 B
= (−1)t+1µCγt−1C

−1 · · · (−1)t+1µCγ0C
−1B

= (−1)t(t−1)µtCγt−1 · · · γ0C−1B
= (−1)t(t−1)µt(−1)t−1+t−2+···+1Cγ0 · · · γt−1C−1B
= (−1)t(3t+1)/2µtCAC−1B

= (−1)t(3t+1)/2µtCAA−1B−TB

= (−1)t(3t+1)/2µtCνB−1B

= (−1)t(t−1)/2µtνC . (D.55)

Thus, B and C may be symmetric or antisymmetric (independently). To see how this is

relevant, consider the group, G, introduced earlier. In particular, consider the subset, {ΓA}2
D−1
A=0 .

Let
∑2D−1

A=0 CAΓA = 0 for some constants, CA ∈ C. Then,

0 =
2D−1∑
A=0

CAΓAΓB (D.56)

=⇒ 0 =
2D−1∑
A=0

CAtr(ΓAΓB) . (D.57)

However, I showed earlier that ΓAΓB = ±ΓC for some C and tr(ΓC) = 0 unless ΓC = I (in
even dimensions).
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Hence, tr(ΓC) 6= 0 =⇒ ΓB = (ΓA)−1 = ±ΓA =⇒ A = B.
Therefore, the sum in D.57 collapses to CB = 0.
As B is arbitrary, {ΓA}2

D−1
A=0 is a linearly independent set. The size of the set is 2D = 2D/2×2D/2,

which is the dimension of the vector space of 2D/2 × 2D/2 matrices.
Thus, {ΓA}2

D−1
A=0 is a basis for the set of 2D/2 × 2D/2 matrices. This basis can be “antisym-

metrised” to {Γ̃(n)}, where Γ̃(n) = γ[a1 · · · γan], i.e. rather than γa1 · · · γan with a1 < a2 < · · · <
an, the indices are antisymmetrised. There are DCn matrices of type, Γ̃(n). Furthermore, as C
is invertible, {ΓA}2

D−1
A=0 is a basis =⇒ {CΓA}2

D−1
A=0 is a basis =⇒ {CΓ̃(n)} is a basis.

(CΓ̃(n))T = (Γ̃(n))TCT

= (γ[a1 · · · γan])T (−1)t(t−1)/2µtνC

= γT[an · · · γ
T
a1]

(−1)t(t−1)/2µtνC

= (−1)t+1µCγ[anC
−1 · · · (−1)t+1µCγa1]C

−1(−1)t(t−1)/2µtνC

= (−1)n(t+1)µn+tC(−1)t(t−1)/2ν(−1)n−1+n−2+···+1γ[a1 · · · γan]
= (−1)(n

2+n+2nt−t+t2)/2µn+tνCΓ̃(n) (D.58)

The last equation means each of the CΓ̃(n) is either symmetric or antisymmetric.
Since every matrix can be decomposed into symmetric and antisymmetric parts, the antisym-
metric CΓ̃(n) must form a basis for the antisymmetric 2D/2 × 2D/2 matrices.
However, the set of antisymmetric matrices is known to have dimension,
2D/2C2 = 1

2
2D/2(2D/2 − 1).

That means there are 1
2
2D/2(2D/2 − 1) antisymmetric CΓ̃(n). To count the number of antisym-

metric CΓ̃(n), note that there are DCn matrices of type, CΓ̃(n), and 1
2
(1−(−1)(n

2+n+2nt−t+t2)/2µn+tν) =

0 for a symmetric CΓ̃(n) and 1 for an antisymmetric CΓ̃(n). Therefore,

1

2
2D/2(2D/2 − 1) =

D∑
n=0

1

2
(1− (−1)(n

2+n+2nt−t+t2)/2µn+tν)DCn

=⇒ 2D − 2D/2 =
D∑
n=0

(1− (−1)(n
2+n+2nt−t+t2)/2µn+tν)DCn

=
D∑
n=0

DCn − νµt(−1)t(t−1)/2
D∑
n=0

µn(−1)n(n+2t+1)/2 DCn

=⇒ 2D/2µt(−1)t(t−1)/2 = ν
D∑
n=0

DCnµ
n(−1)n(n+2t+1)/2 . (D.59)

At this point one might guess that

(−1)n(n+2t+1)/2 =
(−1)nt

2
((1 + i)in + (1− i)(−i)n) . (D.60)

Because of the periodicity in powers of 1 and i, this expression only needs to hold for n, t mod
4, to hold in general. I have checked the equation really does hold for those 16 combinations
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on Mathematica. Hence,

2D/2µt(−1)t(t−1)/2 =
ν

2

D∑
n=0

(µ(−1)t)n((1 + i)in + (1− i)(−i)n)DCn

=
ν(1 + i)

2

D∑
n=0

(µ(−1)t)n(in − i(−i)n)DCn

=
ν(1 + i)

2

( D∑
n=0

(iµ(−1)t)n DCn − i
D∑
n=0

(−iµ(−1)t)n DCn

)
=

1

2
ν(1 + i)((1 + iµ(−1)t)D − i(1− iµ(−1)t)D) . (D.61)

Since 1 + i =
√

2eiπ/4 and 1− i =
√

2e−iπ/4, the last line can be re-written as

2D/2µt(−1)t(t−1)/2 =
1

2
ν
√

2eiπ/42D/2(eiµ(−1)
tDπ/4 − eiπ/2e−iµ(−1)

tDπ/4) , (D.62)

which re-arranges to

ν =

√
2µt(−1)t(t−1)/2

eiπ/4(eiµ(−1)tDπ/4 − eiπ/2e−iµ(−1)tDπ/4)
. (D.63)

Because of the periodicity of eixπ/4 and (−1)x, it only matters whether µ = 1 or −1 and what
s and t are modulo 8.
Therefore, there are only 2× 8× 8 = 128 different cases. Again, one may guess that

eiπ/4(eiµ(−1)
tDπ/4 − eiπ/2e−iµ(−1)

tDπ/4)√
2µt(−1)t(t−1)/2

= cos

(
π

4
(s− t)

)
− µ sin

(
π

4
(s− t)

)
. (D.64)

To check that this equation really holds, one only needs to check the 128 different cases - a
task I have completed with the aid of Mathematica. Finally, ν = ±1 =⇒ ν = 1

ν
and thus

ν = cos(π
4
(s− t))− µ sin(π

4
(s− t)). �

Since equation D.41, the discussion has been limited to even dimensions. It is now time to
extend the results to odd dimensions. Let D be even and let the odd dimension of interest be
D + 1. If D = s + t, assume without loss of generality that D + 1 = (s + 1) + t, i.e. a space
dimension is added. Let γD+1 = γ0 · · · γD−1 as before. Then,

γD+1γa = γ0 · · · γD−1γa
= γ0 · · · γa · · · γD−1γa (no sum)

= γ0 · · · γaγa · · · γD−1(−1)D−a−1

= (−1)aγaγ0 · · · γa · · · γD−1(−1)D−a−1

= (−1)D−1γaγD+1

= −γaγD+1 as D is even, (D.65)

⇐⇒ γD+1γa + γaγD+1 = 0 = −2ηa,DI . (D.66)

Meanwhile, (γD+1)
2 = γ0 · · · γD−1γ0 · · · γD−1

= (−1)D−1+D−2+···+1(γ0)
2 · · · (γD−1)2

= (−1)D(D−1)/2(−1)sI

= (−1)D
2/2+(s−t)/2I

= (−1)(s−t)/2I , (D.67)
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as D2/2 is even, (γa)
2 = I for timelike indices and (γa)

2 = −I for spacelike indices.
Hence, {γa, γD+1}D−1a=0 satisfies the Clifford algebra for s − t ≡ 2 (mod 4) and {γa, iγD+1}D−1a=0

satisfies the Clifford algebra for s − t ≡ 0 (mod 4) (s − t ≡ 1, 3 (mod 4) are not possible for
even D).
By theorems D.2 and D.3, in odd dimensions, there are two inequivalent representations,
{γa, γD+1}D−1a=0 & {−γa,−γD+1}D−1a=0 and {γa, iγD+1}D−1a=0 & {−γa,−iγD+1}D−1a=0 respectively.
Unlike the even case, {γ∗a, γ∗D+1}D−1a=0 & {−γ∗a,−γ∗D+1}D−1a=0 and {γ∗a,−iγ∗D+1}D−1a=0 &
{−γ∗a, iγ∗D+1}D−1a=0 respectively are no longer equivalent.
Thus, in γ∗a = µBγaB

−1, µ can on longer be freely chosen as 1 or −1. Instead, µ will be fixed
by forcing γ∗D+1 = µBγD+1B

−1 or −iγ∗D+1 = µBiγD+1B
−1.

First, consider γ∗D+1 = µBγD+1B
−1. For that,

µBγD+1B
−1 = γ∗D+1

= γ∗0 · · · γ∗D−1
− µBγ0B−1 · · ·µBγD−1B−1

= µDBγD+1B
−1

= BγD+1B
−1 as D is even,

=⇒ µ = 1 . (D.68)

Hence, when s− t ≡ 2 (mod 4), µ = 1. Similarly, −iγ∗D+1 = µBiγD+1B
−1 =⇒ µ = −1 when

s− t ≡ 0 (mod 4). These two equations can be summarised in one equation, µ = (−1)(s−t+2)/2.
To proceed, note that D + 1 odd, the irreducible representations still have dimension, 2D/2.
Therefore, {γa}D−1a=0 can still be used to generate {ΓA}2

D−1
A=0 , which will still be a basis for

2D/2×2D/2 matrices. Furthermore, A’s properties only depend on t, not s. Likewise, in finding
ν = ±1 and and the other results, I only needed 2D/2 is even, not D is even. In fact, looking
back over the proofs, all the properties continue to hold. The only difference is µ = (−1)(s−t+2)/2

is fixed rather than free.
Thus far, I have written odd dimensions as D+ 1 = (s+ 1) + t. To write odd D as s+ t, I will
have to let s→ s− 1 in the theorems for odd dimensions. Overall, one gets the following.

Theorem D.9 (Summary of results). For D = s+ t (D may be odd or even) and D > 1,

• µ = (−1)(s−t+1)/2 in odd dimensions.

• µ can be freely chosen as 1 or −1 in even dimensions.

• γ†a = (−1)t+1AγaA
−1 where A = γ0 · · · γt−1.

• ∃ a matrix, B, such that γ∗a = µBγaB
−1.

• γTa = (−1)t+1µCγaC
−1 where C = BTA.

• A, B and C are all unitary, B∗B = νI for ν = ±1, BT = νB and CT = νµt(−1)t(t−1)/2C.

• ν = cos
(
π
4
(s− t)

)
− µ sin

(
π
4
(s− t)

)
in even dimensions.

• ν = cos
(
π
4
(s− t− 1)

)
− µ sin

(
π
4
(s− t− 1)

)
in odd dimensions.

Proof. See above. �

I am now in a position to evaluate all possible combinations of ν, µ and s − t (ν and µ only
depend on s− t).
For s − t ≡ 1, 3, 5, 7 (mod 8), s − t − 1 ≡ 0, 2, 4, 6 (mod 8) and hence µ = −1, 1,−1, 1 and
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ν = cos 0 + sin 0 = 1, cosπ/2 + sin π/2 = −1, cosπ + sin π = −1, cos 3π/2 + sin 3π/2 = 1.
In the even cases, µ = ±1 and s− t ≡ 0, 2, 4, 6 (mod 8) imply ν = cos 0∓ sin 0 = 1,
cos π/2 ∓ sin π/2 = ∓1, cosπ ∓ sin π = −1, cos 3π/2 ∓ sin 3π/2 = ±1. These results are
summarised in table D.1.

ν µ Possible s− t mod 8 Antiparticle related spinor

1 1 0, 6, 7 pseudo-Majorana
1 −1 0, 1, 2 Majorana
−1 1 2, 3, 4 SU(2) pseudo-Majorana
−1 −1 4, 5, 6 SU(2) Majorana

Table D.1: The antiparticle related spinors possible in different spacetimes

Besides the suite of Majorana like spinors, another special type of spinor relevant to physics is
the so-called Weyl spinor. Weyl spinors are defined as eigenvectors of γD+1. However, I already
showed in equation D.19 that in odd dimensions γD+1γa = γaγD+1 ∀a
=⇒ γD+1g = gγD+1 ∀g ∈ G =⇒ γD+1 ∝ I by Schur’s lemma.
Hence, in odd dimensions, every spinor is an eigenvector of γD+1 and so the concept of a Weyl
spinor would be fruitless.
To accommodate for that, define Weyl spinors to exist only for even dimensional spacetimes.
Rather than γD+1Ψ = λΨ however, it is more customary6 to consider (−1)(s−t)/4γD+1Ψ = λΨ
with (−1)1/2 defined to be −i without loss of generality7.

λ2Ψ = (−1)(s−t)/4γD+1(−1)(s−t)/4γD+1Ψ

= (−1)(s−t)/2γ0 · · · γD−1γ0 · · · γD−1Ψ
= (−1)(s−t)/2(−1)D−1+D−2+···+1(γ0)

2 · · · (γD−1)2Ψ
= (−1)(s−t)/2(−1)D(D−1)/2(−1)sIΨ

= (−1)(s+t)
2/2+s−tΨ

=⇒ λ = ±(−1)(s+t)
2/4+(s−t)/2 (D.69)

In even dimensions, s− t is also even and thus (s+ t)2/4 + (s− t)/2 is an integer =⇒ λ = ±1.
Eigenvectors with eigenvalues, +1 and −1, are called left handed Weyl spinors and right handed
Weyl spinors respectively.

Theorem D.10. The eigenspaces of left handed and right handed Weyl spinors both have
dimension, 2D/2−1, and hence their direct sum is the entire representation space.

Proof. In proving theorem D.4, I showed that γ†a = γa for 0 ≤ a ≤ t − 1 and γ†a = −γa for
t ≤ a ≤ s+ t− 1. Therefore,

γ†D+1γD+1 = γ†D−1 · · · γ
†
0γ0 · · · γD−1

= (−1)sγD−1 · · · γ0γ0 · · · γD−1
= (−1)s(−1)sI

= I , (D.70)

meaning γ†D+1 commutes with γD+1, i.e. γD+1 is a “normal” operator and thus diagonalisable.
Hence, the sum of the dimensions of eigenspaces of λ = 1 and λ = −1 equals the dimension of

6With the benefit of hindsight, the eigenvalues are nicer with this convention.
7There is always a choice to be made between (−1)1/2 = i and (−1)1/2 = −i.
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the full space, namely 2D/2.
Next, let (−1)(s−t)/4γD+1Ψ = ±Ψ. As D is even, by equation D.65, {γa, γD+1} = 0. Hence,

(−1)(s−t)/4γD+1γaΨ = −(−1)(s−t)/4γaγD+1Ψ = ∓γaΨ (D.71)

If Ψ is in the ± eigenspace, then γaΨ is in the ∓ eigenspace. However, all the γa are invertible.
γa induces a bijection between the ± eigenspace to the ∓ eigenspace.
That finally proves that the ± eigenspaces must have the same dimension, namely
1
2
2D/2 = 2D/2−1. �

The component of an arbitrary spinor, Ψ, in each of these eigenspaces can be found by the
projection operators, P± = 1

2
(I±(−1)(s−t)/4γD+1), since P+ +P− = I and (using equation D.67

and s− t being even)

(−1)(s−t)/4γD+1P±Ψ =
1

2
(−1)(s−t)/4γD+1(I ± (−1)(s−t)/4γD+1)Ψ

=
1

2
(−1)(s−t)/4γD+1Ψ±

1

2
(−1)(s−t)/2(γD+1)

2Ψ

=
1

2
(−1)(s−t)/4γD+1Ψ±

1

2
(−1)(s−t)/2(−1)(s−t)/2Ψ

=
1

2
(−1)(s−t)/4γD+1Ψ±

1

2
Ψ

= ±1

2
(Ψ± (−1)(s−t)/4γD+1Ψ)

= ±P±Ψ . (D.72)

Since Weyl spinors can be constructed in any even dimension and (by table D.1) Majorana
spinors can be constructed when s− t ≡ 0, 1, 2 (mod 8), the double of a Majorana-Weyl spinor
is possible when s− t ≡ 0, 2 (mod 8).

D.2 Three space and one time dimension

Up to now, I have considered spinors very generally. For a specific example, consider the case
most relevant to physics, namely s = 3 and t = 1.
Then, D = 4, 2D/2 = 4 and there is a unique irreducible representation8 of the Clifford algebra
(up to equivalence).
It suffices to guess this representation (and thereby prove its existence too). I will use the
so-called “Weyl representation,”

γa ≡
[

0 σa
σ̃a 0

]
where σa ≡ (I, σ1, σ2, σ3), σ̃a ≡ (I,−σ1,−σ2,−σ3) (D.73)

and σ1, σ2 & σ3 are the Pauli matrices. I have to check this representation is well defined.

γaγb + γbγa =

[
0 σa
σ̃a 0

] [
0 σb
σ̃b 0

]
+

[
0 σb
σ̃b 0

] [
0 σa
σ̃a 0

]
=

[
σaσ̃b + σbσ̃a 0

0 σ̃aσb + σ̃bσa

]
=

[
−2ηabI 0

0 −2ηabI

]
= −2ηabI =⇒ the Clifford algebra is satisfied. (D.74)

8Thus far, I have only proven theorems about the uniqueness of representations, not existence.
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Next, it must be shown that the chosen representation is irreducible. Let S be a non-empty
subspace of C4 invariant under all γa.
Therefore, ∀v ∈ C4 and ∀a ∈ {0, 1, 2, 3}, γav ∈ S.
But then, γaγbv ∈ S as γbv = v′ for some v′ ∈ S and thus γav

′ ∈ S.
Likewise, ∀λ1, λ2 ∈ C, (λ1γa + λ2γb)v ∈ S as γav, γbv ∈ S and S is closed under linear
combinations by virtue of being a subspace.
Overall, S is invariant under all products and linear combinations of γa and thus invariant under
all linear combinations of elements in G = {±ΓA}15A=0. By direct evaluation (on Mathematica),

{ΓA}15A=0 =

{
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 ,


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 ,


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 ,


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 ,

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ,

−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 ,


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,


0 −i 0 0
−i 0 0 0
0 0 0 −i
0 0 −i 0

 ,


0 0 −i 0
0 0 0 i
−i 0 0 0
0 i 0 0

 ,


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 ,


0 0 0 −i
0 0 −i 0
0 −i 0 0
−i 0 0 0

 ,


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 ,


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i


}
. (D.75)

However, by inspection, complex linear combinations of these matrices can produce any 4× 4
complex matrix (e.g. look at the 4 matrix subsets {0, 7, 8, 15}, {1, 4, 11, 14}, {2, 3, 12, 13}
and {5, 6, 9, 10} with matrices labelled as per the order in which they are listed above).
Thus, S is invariant under all 4× 4 matrices =⇒ S = C4.
Therefore, the Weyl representation of the Clifford algebra is indeed irreducible.
The Weyl representation is also unitary under the standard inner product of C4 since γ†0 = γ0
and γ†i = −γi. As for Weyl spinors,

(−1)(s−t)/4γ5 = (−1)1/2γ0 · · · γ3

= −i

[
0 I
I 0

] [
0 σ1
−σ1 0

] [
0 σ2
−σ2 0

] [
0 σ3
−σ3 0

]
= −i

[
−σ1 0

0 σ1

] [
−iσ1 0

0 −iσ1

]
=

[
I 0
0 −I

]
(D.76)

=⇒ (−1)(s−t)/4γ5


w
x
y
z

 =


w
x
−y
−z

 . (D.77)

span({(1, 0, 0, 0), (0, 1, 0, 0)}) and span({(0, 0, 1, 0), (0, 0, 0, 1)}) are the eigenspaces of left handed
and right handed Weyl spinors respectively. To reflect this, the four-component spinor, Ψ, can

be written as Ψ =

(
ψα
χα̇

)
, where ψα and χα̇ are two-component Weyl spinors. Undotted and
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dotted indices are left handed and right handed respectively.

As shown by equation D.34, Mab = −1
4
[γa, γb] are Lorentz generators in spinor space. Let

σab = −1
4
(σaσ̃b−σbσ̃a) and σ̃ab = −1

4
(σ̃aσb− σ̃bσa). σab and σ̃ab are called left handed and right

handed Lorentz generators respectively because

Mab = −1

4

([
0 σa
σ̃a 0

] [
0 σb
σ̃b 0

]
−
[

0 σb
σ̃b 0

] [
0 σa
σ̃a 0

])
= −1

4

[
σaσ̃b − σbσ̃a 0

0 σ̃aσb − σ̃bσa

]
=

[
σab 0
0 σ̃ab

]
(D.78)

=⇒ MabΨ =

[
σab 0
0 σ̃ab

] [
ψα
χα̇

]
=

[
σabψα
σ̃abχ

α̇

]
. (D.79)

MabΨ must still be a spinor of the same type as Ψ.
Therefore, σabψα must be a left handed Weyl spinor and σ̃abχ

α̇ must be a right handed Weyl
spinor.
Since Mab only induces a linear transformation, the spinor indices of σab and σ̃ab must be (σab)

β
α

and (σ̃ab)
α̇
β̇

respectively =⇒ MabΨ =

(
(σab)

β
α ψβ

(σ̃ab)
α̇
β̇
χβ̇

)
.

This gives the so-called (1
2
, 0) and (0, 1

2
) representations of the Lie algebra, o(3, 1), namely

Mab(ψα) = (σab)
β
α ψβ and Mab(χ

α̇) = (σ̃ab)
α̇
β̇
χβ̇ respectively. Furthermore, for σab and σ̃ab

to have the indices they do (in type and position), the spinor indices of the extended Pauli
matrices must be (σa)αα̇ and (σ̃a)α̇α. Finally, by direct evaluation, one finds

(σab)
β
α ≡

1

2


0 σ1 σ2 σ3
−σ1 0 iσ3 −iσ2
−σ2 −iσ3 0 iσ1
−σ3 iσ2 −iσ1 0

 and (σ̃ab)
α̇
β̇
≡ 1

2


0 −σ1 −σ2 −σ3
σ1 0 iσ3 −iσ2
σ2 −iσ3 0 iσ1
σ3 iσ2 −iσ1 0

 . (D.80)

This was all at the level of the Lie algebra. To get to the Lie group, one must use the exponential
map. The universal covering group of SO↑(3, 1) is SL(2,C) and thus the exponential map will
generate representations of SL(2,C), not SO↑(3, 1).
Let I+M ∈ SL(2,C) for infinitesimal M . Thus, 1 = det(I+M) = 1 + tr(M) =⇒ tr(M) = 0.
Since the Pauli matrices are a basis for traceless 2 × 2 matrices, sl(2,C) = {ziσi|zi ∈ C3}.
However, that is the complex Lie algebra. To get the real Lie algebra, let

z1 =
1

2
(K01 + iK23), z2 =

1

2
(K02 + iK31) and z1 =

1

2
(K03 + iK12)

=⇒ ziσi =
1

2
((K01 + iK23)σ1 + (K02 + iK31)σ2 + (K03 + iK12)σ3) (D.81)

for Kab ∈ R. Not all the Kab have been defined yet; that is most conveniently accomplished
(to make connection with the Lie algebra, o(3, 1)) by letting Kab = −Kba. Then,

1

2
Kabσab = K01σ01 +K02σ02 +K03σ03 +K12σ12 +K13σ13 +K23σ23

=
1

2
(K01σ1 +K02σ2 +K03σ3 +K12iσ3 −K13iσ2 +K23iσ1)

=
1

2
((K01 + iK23)σ1 + (K02 + iK31)σ2 + (K03 + iK12)σ3)

= ziσi . (D.82)
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Therefore, sl(2,C) =
{

1
2
Kab(σab)

β
α | Kab = −Kba ∈ R

}
.

Finally, as SL(2,C) is simply connected, {N β
α = eK

ab(σab)
β
α /2| Kab = −Kba ∈ R} is a dense

subset of SL(2,C).

Via equation D.37, I showed that under γ′a = Λa
bγ
b = T (Λ)−1γaT (Λ), Ψ′(x) = T (Λ)Ψ. I com-

mented that representation of the Lorentz group, T (Λ), could be extended to a representation
of the universal covering group. This is exactly what I will do now using the exponential map.
As the Lorentz generators when acting on four-component spinors are Mab, T (N) = eK

abMab/2.
The factor of a half is necessary in the exponential because o(3, 1) is only six-dimensional,
where as KabMab double counts the 6 independent Mab via KbaMba = (−Kab)(−Mab). Thus,

T (N) = eK
abMab/2

= e

1
2
Kab

(σab)
β
α 0

0 (σ̃ab)
α̇
β̇



=
∞∑
n=0

1

n!

(
Kab

2

)n [(σab) β
α 0

0 (σ̃ab)
α̇
β̇

]n
=
∞∑
n=0

1

n!

(
Kab

2

)n [((σab) β
α )n 0

0 ((σ̃ab)
α̇
β̇
)n

]

=

[
eK

ab(σab)
β
α /2 0

0 e
Kab(σ̃ab)

α̇
β̇
/2

]
. (D.83)

I have already shown eK
ab(σab)

β
α /2 = N β

α . Let M = e
Kab(σ̃ab)

α̇
β̇
/2

.

1

2
Kabσ̃ab = K01σ̃01 +K02σ̃02 +K03σ̃03 +K12σ̃12 +K13σ̃13 +K23σ̃23

=
1

2
(−K01σ1 −K02σ2 −K03σ3 + iK12σ3 − iK13σ2 + iK23σ1)

=
1

2
((−K01 + iK23)σ1 + (−K02 + iK31)σ2 + (−K03 + iK12)σ3)

= −z∗i σi (D.84)

Then, from M = e
Kab(σ̃ab)

α̇
β̇
/2

,

M = e−z
∗
i σi

=⇒ M † = e−ziσ
†
i = e−ziσi = N−1 ⇐⇒ M = N−†

=⇒ T (N)Ψ = eK
abMab/2Ψ

=

[
N β
α 0
0 (N−†)α̇

β̇

] [
ψβ
χβ̇

]
=

[
N β
α ψβ

(N−†)α̇
β̇
χβ̇

]
. (D.85)

Hence, it must be that under the (1
2
, 0) and (0, 1

2
) representations of SL(2,C), left and right

handed Weyl spinors respectively transform as ψ′α = N β
α ψβ and χ′α̇ = (N−†)α̇

β̇
χβ̇ = χβ̇(N−∗) α̇

β̇
.

One subtlety of this result (in particular the block diagonal form of eK
abMab/2) is that although

the representation of the Clifford algebra is irreducible, the induced SL(2,C) representation is
not. The latter’s irreducible components are the spaces of left handed and right handed spinors.
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Since N ∈ SL(2,C) =⇒ det(N) = 1, N µ
α N ν

β εµν = εαβ and εµν(N−1) α
µ (N−1) β

ν = εαβ

where εαβ and εαβ are antisymmetric tensors with ε12 = −1 and ε12 = 1.
As εαβ and εαβ are invariant tensors of SL(2,C) and εαγεγβ = δαβ , they can be used to raise
and lower indices.
Then, χ′α̇ = εα̇β̇χ

′β̇ = εα̇β̇χ
γ̇(N−∗) β̇

γ̇ .

N µ
α N ν

β εµν = εαβ ⇐⇒ ε = NεNT in matrix notation. That means

N−1ε = εNT =⇒ −N−1ε = −εNT =⇒ N−1εT = εTNT =⇒ εα̇β̇(N−∗) β̇
γ̇ = εβ̇γ̇(N

∗) β̇
α̇ .

Therefore, χ′α̇ = εα̇β̇χ
γ̇(N−∗) β̇

γ̇ = εβ̇γ̇(N
∗) β̇
α̇ χγ̇ = (N∗) β̇

α̇ χβ̇
Similarly, raising the index on the left handed spinor, ψ′α = εαβψ′β = εαβN γ

β ψγ.

εµν(N−1) α
µ (N−1) β

ν = εαβ =⇒ ε = N−T εN−1 =⇒ εN = N−T ε =⇒ εαβN γ
β = (N−1) α

β εβγ.

Therefore, ψ′α = εαβN γ
β ψγ = (N−1) α

β εβγψγ = ψβ(N−1) α
β .

Having established these transformation properties, one can now develop the two-component
spinor formalism via tensor products, index raising/lowering etc. like for other tensor types.

The two-component spinor formalism was based on writing the full spinor space as a direct
sum of left handed and right handed Weyl spinors. However, I also spent many pages earlier
considering Majorana spinors and it would be incomplete of me not not consider them in the
special case of s− t = 3− 1 = 2 where (by table D.1) they do exist.
By definition D.6 and theorem D.7, a four-component spinor is Majorana if and only if
Ψ = νµt(−1)t(t−1)/2C−1ΨT = 1× (−1)1(−1)1×0/2C−1ΨT = −C−1ΨT =⇒ ΨT = −CΨ.
It suffices to guess C by forcing it to satisfy theorem D.5 and equation D.55. With ν = 1, µ =
−1 and t = 1, they say C†C = I, γTa = −CγaC−1 and CT = −C. Guided by the antisymmetry
and the block diagonal nature of the Weyl representation, try

C =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 (D.86)

=⇒ C†C =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I (D.87)

C−1 = −C by the previous line and thus −CγaC−1 = CγaC. Also, C can also be written
slightly more compactly as

C =

[
ε 0
0 −ε

]
where ε =

[
0 1
−1 0

]
. (D.88)
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This notation allows easier checking of the remaining property, −CγaC−1 = γTa . Explicitly,

−CγaC−1 =

[
ε 0
0 −ε

] [
0 σa
σ̃a 0

] [
ε 0
0 −ε

]
=

[
0 −εσaε

−εσ̃aε 0

]
εσ0ε = εIε =

[
0 1
−1 0

] [
0 1
−1 0

]
=

[
−1 0
0 −1

]
= −σT0

εσ1ε =

[
0 1
−1 0

] [
0 1
1 0

] [
0 1
−1 0

]
=

[
0 1
−1 0

] [
−1 0
0 1

]
=

[
0 1
1 0

]
= σT1

εσ2ε =

[
0 1
−1 0

] [
0 −i
i 0

] [
0 1
−1 0

]
=

[
0 1
−1 0

] [
i 0
0 i

]
=

[
0 i
−i 0

]
= σT2

εσ3ε =

[
0 1
−1 0

] [
1 0
0 −1

] [
0 1
−1 0

]
=

[
0 1
−1 0

] [
0 1
1 0

]
=

[
1 0
0 −1

]
= σT3

In summary,

−CγaC−1 =

[
0 σ̃Ta
σTa 0

]
= γTa since σ̃a = (I,−σi) . (D.89)

Therefore, the chosen matrix for C can indeed be used as the charge conjugation matrix. Then,

−CΨ =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0



w
x
y
z

 =


−x
w
z
−y

 . (D.90)

Meanwhile,

ΨT = (Ψ†A)T

= ATΨ∗

= γT0 Ψ∗

=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



w∗

x∗

y∗

z∗



=


y∗

z∗

w∗

x∗

 (D.91)

Therefore,

−CΨ = ΨT =⇒ Ψ =


w
x
−x∗
w∗

 . (D.92)

In the two-component spinor notation,

(
w
x

)
would be denoted as ψα. Then,

ψα = εαβψβ ≡
[
0 −1
1 0

] [
w
x

]
=

[
−x
w

]
=⇒

[
−x∗
w∗

]
= (ψα)∗ (D.93)
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Conjugation swaps dotted and undotted spinor indices since ψ′α = N β
α ψβ

=⇒ (ψ′α)∗ = (N∗) β
α (ψβ)∗ (and likewise for conjugating an initially dotted spinor) which is the

transformation of right handed Weyl spinor as shown earlier. For this reason, (ψα)∗ can be
denoted as ψα̇.

In summary, the most general Majorana spinor for s = 3 and t = 1 is Ψ =

(
ψα
ψα̇

)
.

Finally, it is worth checking that despite appearances, spinor representations are not the same
as vector representations. It is often remarked (e.g. by quoting Michael Atiyah) that spinors
are like the square root of a vector. That is because of arguments like the one below.
Let δab +Xa

b ∈ SO↑(3, 1) for infinitesimal Xa
b . Then, by the defining properties of SO↑(3, 1),

1 = det(δab +Xa
b ) = 1 + tr(X) =⇒ Xa

a = 0.
Also, ηab = ηcd(δ

c
a + Xc

a )(δdb + Xd
b ) = ηab + Xba + Xab =⇒ Xba = −Xab. Antisymmetry

automatically implies tracelessness; thus o(3, 1) consists of all 4× 4 antisymmetric matrices.
Therefore, Λ = eK

abSab/2 ∈ SO↑(3, 1) where Sab is a basis (with 6 independent elements) for
4× 4 antisymmetric matrices. The corresponding group action on four-component spinors is
T (Λ) ≡ T (N) = eK

abMab/2. The standard basis for 4× 4 antisymmetric matrices is

Sab ≡

{
0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 ,


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


}
. (D.94)

It can be checked that Sab satisfies the Lie algebra generator commutation relations for o(3, 1).
By Rodrigues’ formula and other related identities, if (nx, ny, nz) is a unit vector of R3, then
eθA, where

A =

 0 nz −ny
−nz 0 nx
ny −nx 0

 , (D.95)

is a rotation of θ about ~n. A can be represented in term of 4× 4 matrices via

A = nz


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

− ny


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

+ nx


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


= nzS12 − nyS13 + nxS23 (D.96)
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and thus eθA = eθ(nzS12−nyS13+nxS23) ∈ SO↑(3, 1). The corresponding representation on spinor
space is

T (N) = eθ(nzM12−nyM13+nxM23)

= e
θ

(
nz

σ12 0
0 σ̃12

−ny
σ13 0

0 σ̃13

+nx
σ23 0

0 σ̃23


)

= e

iθ
2

nxσ1 + nyσ2 + nzσ3 0
0 nxσ1 + nyσ2 + nzσ3



=

[
eiθ~n·~σ/2 0

0 eiθ~n·~σ/2

]
(~n · ~σ)2 =

[
nz nx − iny

nx + iny −nz

] [
nz nx − iny

nx + iny −nz

]
=

[
n2
z + n2

x + n2
y 0

0 n2
x + n2

y + n2
z

]
= I as ||~n|| = 1 . (D.97)

Then, the exponential can be evaluated to

eiθ~n·~σ/2 =
∞∑
m=0

1

m!

(
iθ

2

)m
(~n · ~σ)m

= I
∞∑
m=0

1

(2m)!

(
iθ

2

)2m

+ (~n · ~σ)
∞∑
m=0

1

(2m+ 1)!

(
iθ

2

)2m+1

= cos(θ/2)I + i sin(θ/2)~n · ~σ . (D.98)

Notice that a rotation of θ has lead to a rotation of only θ/2 in the cos and sin terms acting
on spinor space.
e.g. Let θ = 2π =⇒ Λ = eθA = I as a 2π rotation does nothing. However,

T (N) =

[
cos(π)I + i sin(π)~n · ~σ 0

0 cos(π)I + i sin(π)~n · ~σ

]
= −I (D.99)

T (N)Ψ = −Ψ under a 2π rotation.
Hence, one needs to do a full 2π rotation twice to return the spinor, Ψ, to its original state.
Therefore, the spinor representation really is different to the vector representation. This essen-
tially reflects the fact that the spinor is transforming under SL(2,C), not SO↑(3, 1). The
SL(2,C)/Z2

∼= SO↑(3, 1) isomorphism means N and −N both correspond to the same Lorentz
transformation, Λ. That is why Λ = I can still lead to T (N) = −I; the two are related by the
Z2 quotienting.
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Appendix E

Notational conventions

Most, if not all, of these conventions follow those of [25]. To be well defined, some of these
conventions require quite non-trivial concepts and theorems. I will simply be taking them as
assumed knowledge. In such cases, it may help to read appendix D if the issue concerns spinors.
There are also times when a result could be placed in the present appendix or in appendix F.
In such cases, I have chosen not to duplicate results, but instead choose whichever appendix I
think is better suited for that result.

The Einstein summation convention will be in effect at all times.

At all times I will be working in units where c = 1 and ~ = 1.

∗ denotes complex conjugate.

Given a matrix, M , the inverse, inverse transpose, inverse conjugate transpose and inverse
conjugate are denoted by M−1,M−T ,M−† and M−∗ respectively.

While many results in my thesis generalise to arbitrary manifolds, at all times I have re-
stricted attention to four-dimensional, orientable, path connected, Lorentzian manifolds with
a (−1, 1, 1, 1) metric signature.

[·, ·] denotes a commutator and {·, ·} denotes an anticommutator.

SO↑(3, 1) denotes the proper orthochronous Lorentz group.

All Lie algebras are denoted in fraktur, e.g. sl(2,C) is the Lie algebra of SL(2,C).

Three types of indices - curved space, local Lorentz and spinor - are frequently encountered in
this work. They are represented by Latin letters from the middle of the alphabet, Latin letters
from the start of the alphabet and Greek letters1 respectively. When working in flat space, I
will use Latin letters from the start of the alphabet.
e.g. The metric would be denoted gmn(x) and would transform as

g′mn(x′) =
∂xp

∂x′m
∂xq

∂x′n
gpq(x) (E.1)

under transformations, x→ x′, of the general coordinate group.
Then, one can introduce a vierbein2 by {e m

a (x)∂m}3a=0 such that ηab = e m
a (x)e n

b (x)gmn(x).

1There are two types of spinor indices - dotted and undotted - as illustrated below.
2A vierbein is a new tangent space basis.
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The {e m
a ∂m}3a=0 are only unique up to a Lorentz transformation within the tangent space3.

e.g. A curved space object such as the Ricci tensor, Rmn(x) can be converted into

Rab(x) = e m
a (x)e n

b (x)Rmn(x) (E.2)

and then under a local Lorentz transformation, e′ ma = (Λ−1)bae
m
a for some Λ ∈ SO↑(3, 1) (the

proper orthochronous Lorentz group), Rab would transform as

R′ab(x) = (Λ−1)ca(Λ
−1)dbRcd(x) . (E.3)

For the collection, e m
a , e a

m denotes (e m
a )−1. Then, {e a

m (x)dxm}3a=0 is a basis for the cotangent
space and is called the inverse vierbein.
Finally, two-component spinors are required for objects transforming under representations of
SL(2,C) - the universal covering group of SO↑(3, 1). Such type-(m,n) spin tensors transform
under the “T (m/2,n/2)” representation of SL(2,C) by

ψ′α1···αmα̇1···α̇n(x) = N β1
α1
· · ·N βm

αm N∗ β̇1
α̇1
· · ·N∗ ˙βm

˙αm
ψβ1···βmβ̇1···β̇n(x) (E.4)

for some N ∈ SL(2,C). This representation is irreducible when ψ is symmetric in its dotted
and undotted indices independently. By equation E.4, (ψα1···αmα̇1···α̇n(x))∗ transforms as a type-
(n,m) spin tensor. Motivated by that, let ψ̄α1···αnα̇1··· ˙αm(x) denote (ψα1···αmα̇1···α̇n(x))∗.

The three types of indices are lowered an raised by the general metric, Minkowski metric
and Levi-Civita symbol and their inverses respectively.
e.g. Vm = gmnV

n, Va = ηabV
b, ψα = εαβψ

β and ψα̇ = εα̇β̇ψ
β̇ to lower indices and analogously

with the inverses to raise indices.

Levi-Civita symbols are normalised by ε12 = −1, ε12 = 1, ε1̇2̇ = −1, ε1̇2̇ = 1, ε0123 = −1
and ε0123 = 1.

(σa)αα̇ ≡ (I, σ1, σ2, σ3) (E.5)

(σ̃a)
α̇α = εαβεα̇β̇(σa)ββ̇ ≡ (I,−σ1,−σ2,−σ3) (E.6)

σ1,2,3 = Pauli matrices (E.7)

(σab)
β
α = −1

4
((σa)αα̇(σ̃b)

α̇β − (σb)αα̇(σ̃a)
α̇β)

≡ 1

2


0 σ1 σ2 σ3
−σ1 0 iσ3 −iσ2
−σ2 −iσ3 0 iσ1
−σ3 iσ2 −iσ1 0

 (E.8)

(σ̃ab)
α̇
β̇

= −1

4
((σ̃a)

α̇α(σb)αβ̇ − (σ̃b)
α̇α(σa)αβ̇)

≡ 1

2


0 −σ1 −σ2 −σ3
σ1 0 iσ3 −iσ2
σ2 −iσ3 0 iσ1
σ3 iσ2 −iσ1 0

 (E.9)

(σab)
β
α are the Lorentz generators, i.e. it can be shown{

N β
α = e

1
2
Kab(σab)

β
α | Kab is a constant, real, antisymmetric matrix

}
(E.10)

3That is why the term, “local Lorentz,” is used to describe the corresponding indices.
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is a dense subset of SL(2,C). Upon a representation of SL(2,C) (e.g. in the space of type-(m,n)
spin tensors), let Mab denote the pushforward of σab. I will (somewhat lazily) call Mab Lorentz
generators as well. The “left handed” and “right handed” parts to the Lorentz generator are
denoted by Mαβ and M α̇β̇ respectively and are connected to the (full) Lorentz generator by

Mαβ = 1
2
(σab)αβMab and M α̇β̇ = −1

2
(σ̃ab)α̇β̇Mab.

With (σa)αα̇ and (σ̃a)
α̇α, one can convert a local Lorentz vector index into a dotted and undotted

index pair and vice versa by

Vαα̇ = (σa)αα̇V
a and Va = −1

2
(σ̃a)

α̇αVαα̇ . (E.11)

The vierbein is also used to transform the covariant derivative from having a general coordinate
to local Lorentz index - just like for normal tensors - by

∇a = e m
a ∇m . (E.12)

For this equation to be consistent with the normal action of ∇m (under a metric compatible,
torsion-free connection), one needs to define

∇a = e m
a ∂m +

1

2
ωabcM

bc (E.13)

where ωabc =
1

2
(Cbca + Cacb − Cabc) and (E.14)

C c
ab = (e n

a ∂n(e m
b )− e n

b ∂n(e m
a ))e c

m . (E.15)

These C c
ab are called “anholonomy coefficients” and satisfy [e m

a ∂m, e
n
b ∂n] = C c

ab e
m
c ∂m.

Similarly, I will frequently be using ∇αα̇ = (σa)αα̇∇a and ∇αα̇ = εαβεα̇β̇∇ββ̇ = (σ̃a)
α̇α∇aas well.

Without vierbeins, Christoffel symbols are denoted by Γmnp = 1
2
gmq(∂ngpq + ∂pgqn − ∂qgnp).

A series of derivatives acts on all terms enclosed in brackets, e.g. ∇a1 · · · ∇an(Rϕ) means
there are n derivatives, ∇a1 , ..., ∇an , acting on the product, Rϕ, with ∇an acting first and
∇a1 acting last. I will try not to write any ambiguous expressions such as ∇aϕ∇aϕ which in
principle could mean ∇a(ϕ)∇a(ϕ) or ∇a(ϕ∇aϕ). The only exception to this rule is when there
is a symmetrisation or antisymmetrisation which would make brackets around differentiated
terms ungainly. In such cases the derivatives are taken to act to the extent of the symmetrisa-
tion or antisymmetrisation brackets. For example, in a term like ∇(α

β̇
ξβγ)α̇β̇ψα, the derivative

acts on ξ only, not ψ; explicitly writing something like ∇(α

β̇
(ξβγ)α̇β̇)ψα seems too cumbersome -

although in a term like ∇ γ̇
(α (σ)ξβγ)β̇γ̇∇ββ̇ψγ, it is unavoidable because the derivative only acts

on σ, but the symmetrisation extends beyond that.

I will be working with the Weyl representation of the Dirac matrices,

γa =

[
0 σa
σ̃a 0

]
. (E.16)

Four-component spinors are denoted in bold, e.g. Ψ =

(
ψα
χ̄α̇

)
. Four-component spinors will

always be denoted as column vectors. When the components are too long to fit in a line, I will
write Ψ = [ψα, χ

α̇]T so that Ψ is still a column.

If Ψ =

(
ψα
χ̄α̇

)
, then Ψ denotes (χα, ψ̄α̇) = Ψ†γ0.

Any integral stated without bounds implicitly means integrate over all possible values of the
variables comprising the volume element.
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Appendix F

Frequently used identities

Most of the following identities are listed in [25]. I will use them liberally without proof or
explicit mention.

Upon an infinitesimal Weyl transformation, e′ ma = (1 + σ)e m
a ,

g′mn = (1− 2σ)gmn (F.1)

∇′a = ∇a + σ∇a −∇b(σ)Mab (F.2)

R′abcd = (1 + 2σ)Rabcd + ηbd∇a∇c(σ)− ηbc∇a∇d(σ) + ηac∇b∇d(σ)− ηad∇b∇c(σ) (F.3)

R′ab = (1 + 2σ)Rab + ηab�(σ) + 2∇a∇b(σ) (F.4)

R′ = (1 + 2σ)R + 6�(σ) (F.5)

C ′abcd = (1 + 2σ)Cabcd (F.6)

C ′mnpq = Cm
npq . (F.7)

I will also require some of the finite case. Upon e′ ma = eσe m
a ⇐⇒ g′mn = e−2σgmn,

∇′a = eσ(∇a −∇b(σ)Mab) (F.8)

R′ = e2σ(R + 6�(σ)− 6∇a(σ)∇a(σ)) . (F.9)

When faced with spinor gymnastics, the following identities are invaluable.

ψαχ
α = −ψαχα (F.10)

ψα̇χ
α̇ = −ψα̇χα̇ (F.11)

(σa)αα̇(σ̃b)
α̇β + (σb)αα̇(σ̃a)

α̇β = −2ηabδ
β

α (F.12)

(σ̃a)
α̇α(σb)αβ̇ + (σ̃b)

α̇α(σa)αβ̇ = −2ηabδ
α̇
β̇

(F.13)

(σa)αα̇(σ̃b)
α̇α = −2ηab (F.14)

(σa)αα̇(σ̃a)
β̇β = −2δβαδ

β̇
α̇ (F.15)

(σa)αβ̇(σ̃b)
β̇β(σc)βα̇ = ηca(σb)αα̇ − ηbc(σa)αα̇ − ηab(σc)αα̇ + iεabcd(σ

d)αα̇ (F.16)

(σ̃a)
α̇β(σb)ββ̇(σ̃c)

β̇α = ηca(σ̃b)
α̇α − ηbc(σ̃a)α̇α − ηab(σ̃c)α̇α − iεabcd(σ̃

d)α̇α (F.17)

(σa)αβ̇(σ̃bc)
β̇
α̇ =

1

2
(ηab(σc)αα̇ − ηac(σb)αα̇ − iεabcd(σ

d)αα̇) (F.18)

(σ̃ab)
α̇
β̇
(σ̃c)

β̇α =
1

2
(ηbc(σ̃a)

α̇α − ηac(σ̃b)α̇α + iεabcd(σ̃
d)α̇α) (F.19)

(σab)
β
α (σc)βα̇ =

1

2
(ηbc(σa)αα̇ − ηac(σb)αα̇ − iεabcd(σ

d)αα̇) (F.20)

(σ̃a)
α̇β(σbc)

α
β =

1

2
(ηab(σ̃c)

α̇α − ηac(σ̃b)α̇α + iεabcd(σ̃
d)α̇α) . (F.21)
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I will regularly require the action of Lorentz generators on different tensors. They are

Mab(ψα) = (σab)
β
α ψβ (F.22)

Mab(ψ
α̇) = (σ̃ab)

α̇
β̇
ψβ̇ (F.23)

Mab(V
c) = δcaVb − δcbVa (F.24)

Mαβ(ψγ) =
1

2
(εγαψβ + εγβψα) (F.25)

M α̇β̇(ψα) = 0 (F.26)

Mαβ(ψα̇) = 0 (F.27)

M α̇β̇(ψγ̇) =
1

2
(εγ̇α̇ψβ̇ + εγ̇β̇ψα̇) . (F.28)

For tensors with more than one index, a Leibniz style rule applies index to index, e.g.

Mab(T
cd) = δcaT

d
b − δcbT d

a + δdaT
c
b − δdbT ca . (F.29)

The Riemann tensor definition, [∇a,∇b] = 1
2
R cd
ab Mcd, written in spinor notation is

[∇αα̇,∇ββ̇] =
1

2
R cd
αα̇ββ̇

Mcd (F.30)

= Rαα̇ββ̇µνM
µν +Rαα̇ββ̇µ̇ν̇M

µ̇ν̇ (F.31)

where Rαα̇ββ̇µν =
1

2
(σa)αα̇(σb)ββ̇(σcd)µνRabcd (F.32)

and Rαα̇ββ̇µ̇ν̇ = −1

2
(σa)αα̇(σb)ββ̇(σ̃cd)µ̇ν̇Rabcd . (F.33)

The following are well known identities of the Riemann tensor and its descendants.

Rabcd = −Rabdc (F.34)

Rabcd = −Rbacd (F.35)

Rabcd = Rcdab (F.36)

0 = Rabcd +Racdb +Radbc (F.37)

0 = ∇aRdebc +∇bRdeca +∇cRdeab (F.38)

Rab = Rc
acb (F.39)

Rab = Rba (F.40)

R = Ra
a (F.41)

∇bRab =
1

2
∇aR (F.42)

Cabcd = Rabcd −
1

2
ηacRbd −

1

2
ηbdRac +

1

2
ηadRbc +

1

2
ηbcRad −

1

6
Rηbcηad +

1

6
Rηacηbd (F.43)

In spinor notation, these properties can be used to define

Eαβα̇β̇ =
1

2
(σa)αα̇(σb)ββ̇

(
Rab −

1

4
R

)
(F.44)

Cαβµν =
1

12
((σab)αβ(σcd)µν + (σab)αµ(σcd)νβ + (σab)αν(σ

cd)βµ)

(
Cabcd −

i

2
ε ef
ab Cefcd

)
(F.45)

C α̇β̇µ̇ν̇ =
1

12
((σ̃ab)α̇β̇(σ̃cd)µ̇ν̇ + (σ̃ab)α̇µ̇(σ̃cd)ν̇β̇ + (σ̃ab)α̇ν̇(σ̃

cd)β̇µ̇)

(
Cabcd +

i

2
ε ef
ab Cefcd

)
(F.46)

F =
1

12
R (F.47)
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and thereby derive the following identities,

Eαβα̇β̇ = E(αβ)(α̇β̇) (F.48)

Cαβµν = C(αβµν) (F.49)

C α̇β̇µ̇ν̇ = C(α̇β̇µ̇ν̇) (F.50)

Rαα̇ββ̇µν = εα̇β̇Cαβµν + εαβEµνα̇β̇ + εα̇β̇(εαµεβν + εανεβµ)F (F.51)

Rαα̇ββ̇µ̇ν̇ = εαβC α̇β̇µ̇ν̇ + εα̇β̇Eαβµ̇ν̇ + εαβ(εα̇µ̇εβ̇ν̇ + εα̇ν̇εβ̇µ̇)F (F.52)

∇ββ̇Eαβα̇β̇ = −3∇αα̇F (F.53)

∇µ
α̇Cαβγµ = ∇ β̇

(α Eβγ)β̇α̇ (F.54)

∇ µ̇
α C α̇β̇γ̇µ̇ = ∇β

(α̇Eβαβ̇γ̇) . (F.55)
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Appendix G

Student achievements

As the end of 3rd year beckoned, a looming choice approached. What to study next? Like
my peers, I subjected myself to the seemingly endless series of advertorial presentations about
different physics and mathematics research groups available at UWA. Some may find it curious
that after all the Powerpoints and aesthetically pleasing imagery I chose to try join the group
that promised nothing more than one line - “for Field Theory and Quantum Gravity [FTQG]
projects, please contact Prof. Sergei Kuzenko.” But there was little counterintuition about
my choice. I did not care about publishing papers or conducting groundbreaking research in
an honours or master’s. I wanted to learn as much advanced, but fundamental, physics and
mathematics as I could. And not niche research areas of interest to few; I wanted to gain
skill and knowledge valuable across the mathematical sciences. For that, the FTQG group
seemed the perfect fit. I think my biggest achievement (and a great credit to FTQG group)
in the Master of Physics - more so than any lemma or theorem that I proved in this thesis -
was the progress I made on that path. Producing this document would have been impossible
without learning a highly non-trivial amount of differential geometry & general relativity and
developing significant fluency with spinor gymnastics. Indeed, of the three semesters I spent
in this course, the entirety of the first was dedicated to up-skilling myself in preparation for a
technical project in the FTQG group. As for the project itself, my achievements were more in
presenting existing knowledge in a coherent and self-contained fashion, rather than developing
new knowledge. This is not unusual for master’s projects in the theoretical physics community.
As I hinted in chapter 1, [20] contains essentially the same results as mine for 2nd order
operators. However, I was not aware of this paper until the last month of my master’s and
I derived my results independently. Also, as I stated in chapter 3, some extensions to the
problem I considered (or related problems) about the conformal d’Alembertian have already
been solved in [17] and [21]. In practice, I treated the conformal d’Alembertian as more like a
training exercise in becoming comfortable with spinors and higher symmetries before tackling
the massless Dirac operator - a more technically challenging task. My main achievements in
the project were doing and presenting long calculations not readily available in the literature.
During my master’s, I was perplexed by the culture of scientific publication - in particular the
almost complete lack of detailed proofs/calculations and the sheer volume of detail brushed
under the carpet. I wanted to do better. In this spirit, the accursed words, “obviously,”
“clearly,” “easily” and “it can be shown” were all banished as far as possible in my thesis. It
is my hope that any student who completed the same foundational study as I did in the 1st
semester of my course would be able to understand almost everything I have written in this
thesis. To assist in that, I also included appendix D, a comprehensive overview of spinors. It
was not all a solo effort, of course. Other than Sergei, I had help from Emmanouil Raptakis in
particular with my calculations. Although most of the work is my own, he guided me in how
to approach the problems and also walked me through some easier cases (e.g. flat space).
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