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Abstract

For a little over a century now, symmetry has played a foundational role in the development
of theoretical physics. Loosely, a higher symmetry is a differential operator which takes a
solution of the equations of motion for a system to a new solution of those equations of motion.
While originally studied by experts in general relativity analysing the Kerr spacetime and
subsequently by mathematicians in the context of separation of variables on manifolds, in
recent years higher symmetries have garnered renewed interest in high energy physics due
to the parallels between their algebra and higher spin algebras. In this thesis, I developed
techniques - especially emphasizing spinor methods - for computing higher symmetries in curved
spacetimes. As illustrative examples, the equations of motion I considered were the relativistic
wave equations for spin-0 and spin-1/2 massless particles. I mainly studied the cases when
the higher symmetry was a 1st or 2nd order differential operator. For both equations of
motion I was able to uniquely determine physically admissible candidates for 1st and 2nd
order higher symmetries in terms of conformal Killing vectors/tensors. However, only the 1st
order candidates actually proved to be higher symmetries on arbitrary manifolds possessing a
conformal Killing vector. Provided a conformal Killing tensor exists on the manifold, conformal
flatness was a sufficient, but perhaps not necessary, condition for the 2nd order candidates to
be higher symmetries. I finished by briefly exploring the potential for “conformal geometry”
to improve the efficiency of the calculations presented. All calculations were performed on an
arbitrary, four-dimensional, orientable, connected manifold of Lorentzian metric signature.
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Chapter 1

Introduction

Nothing in physics seems so hopeful to as the idea that it s possible for a theory to have a high
degree of symmetry [and be] hidden from us in everyday life. The physicist’s task is to find this
deeper symmetry.

- Steven Weinberg

The last hundred years or so has seen something of a revolution in how theoretical physi-
cists view the foundations of their subject. It is not just that we have more accurate or
sophisticated theories now. While the days of Newton’s laws are of course well and truly be-
hind us, we have also moved on from the mindset of those days. The ultimate test of any
theory is still its agreement with experiment, but there has been enormous upheaval in how
theoreticians formulate their ideas in the first place. No longer do physicists simply postulate
laws - equations of motion - to fit experiment like Kepler, Newton, Carnot or even Maxwell.
Instead, one now starts from symmetry [I]. Simply put, a symmetry is a system’s invariance
under a particular transformation. The first benefactor of the new age thinking - indeed one
its pioneers - was Einstein, in his formulation of special relativity. Rather than relativistic
invariance being a consequence of Maxwell’s equations, Maxwell’s equations were now largely
just a consequence of relativistic invariance. Ten years later, Einstein upturned the standard
worldview again with general relativity. In some sense, Einstein’s general theory of relativity
was grounded in the belief that physics must be invariant under an arbitrary change to the
reference system. Thus, the equations of motion had to transform covariantly under general
coordinate transformations. Simple enough to state, but profoundly consequential in terms of
physical implications to the description of gravity and the technical tools required to describe it.

However, several developments conspired to put symmetry on the pedestal it is placed to-
day. Through the 19th century, mathematicians too came to court symmetry. The path laid
by Galois, Cauchy and Cayley, pursued through to Klein’s Erlangen program meant that group
theory was here to stay. With group theory, physicists could not only appreciate thinking sym-
metrically, they could also describe it quantitatively. One of the first to wield the new power
was Wigner. With many striking applications of group theory, Wigner brought symmetry
to the fledgling quantum mechanics - in particular the theory of atomic spectra and isospin
symmetry [2]. By the late 1920s, Wigner had already proven that symmetries in quantum
mechanics are implemented by linear and unitary or - if time reversal was involved - antilinear
and antiunitary operators. But in special relativity, the fundamental symmetries are Poincaré
transformations. Therefore, to marry quantum mechanics and special relativity, one had to
study the unitary representations of the Poincaré group. In his famous 1939 treatise [3], Wigner
classified the irreducible representations by mass and spin - in the process explaining the origin
of spin, elucidating the meaning of elementary particle, deriving a fundamental distinction be-



tween massive and massless particles and paving the path to modern formulations of quantum
field theory - see e.g. [4].

Group theory and symmetry have since become ingrained in the psyche of the modern theo-
retical physicist. In 1956, while visiting Russia, even the famously austere Dirac once used his
opportunity to present the honorary comment on a Moscow university blackboard by writing
“a physical law must possess mathematical beauty” - an inscription no-one has since dared to
erase. In this context, beauty is of course nothing but symmetry.

In summary, the story of modern theoretical physics is inextricably linked with the study
of symmetry in its myriad manifestations. Rather than the spacetime symmetries of interest
to Einstein and Wigner or the various internal and gauge symmetries present in quantum field
theory, I will discuss symmetries of the equations of motion themselves with a concept called
“higher symmetry.” While precise definitions are deferred to chapter [2] loosely speaking, higher
symmetries are differential operators, D, which map solutions of some other differential opera-
tor, ®, to new solutions of the same operator - hence the term “symmetry.” The operator, 2,
is typically an operator appearing in the equations of motion for some physically interesting
system. In recent years there has been a renewed interest in the subject as various connections
have emerged between higher spin algebras, the AdS/CFT correspondence and the algebra
built from linear combinations and compositions of higher symmetries.

The main task of my thesis will be to develop and present techniques to compute higher
symmetries in curved spacetimes. Rather than an algorithmic general theory, the formalism is
best illustrated via specific examples. As such, I will be focused on two operators in particular.
In chapter [3, T will consider the conformal d’Alembertian, ® = A = [J — %R, acting on a
scalar field, ¢, and in chapter [4] T will consider the massless Dirac operator, v*V,, acting on a
four-component Dirac spinor, ¥. These operators represent conformally invariant relativistic
wave equations for massless spin-0 and spin-1/2 particles. Some of the longer proofs associated
with results in these chapters are contained in appendices [B] and [C] In finding higher sym-
metries, [ will especially emphasize spinor methods. Not only are they natural when working
with the Dirac operator, they also make many properties of some tensors and differential op-
erator contractions more transparent. Given the heavy reliance on spinors - and especially the
two-component formalism - I have provided a comprehensive account of spinors in appendix
D] Further notational conventions and frequently used identities are listed in appendices [E]
and [F] respectively. While I did most of my calculations using standard differential geometry,
in chapter [5], I will present the case for “conformal geometry” as a superior alternative when
dealing with conformally invariant operators and conformal field theories in general.

But before all that, I will begin in chapter [2[ (while briefly referring to appendix [A| in the
process) with a slightly more extended review of symmetry in general relativity. This will
serve to give more quantitative motivation for the study of higher symmetries while also intro-
ducing many definitions and theorems which will be foundational to the later chapters.



Chapter 2

Symmetries and higher symmetries in
general relativity

In this chapter I will briefly recount the remarkable story of symmetry within the context of
general relativity and classical field theory more broadly. Concurrently, I will build towards
the research topic I will be studying in subsequent chapters. Unlike the rest of the thesis, in
this chapter I will occasionally devolve responsibility for proofs to various references.

With the benefit of hindsight, it is fair to say symmetry’s most starring role in physics is
its ability to constrain the form of action functionals and subsequently apply Noether’s theo-
rem to generate conserved quantities [5]. For a taster, first consider classical field theory in flat
space - the domain governed by special relativity. Note that it will also almost certainly help
to read appendices [E] and [F| at some point before the end of this chapter.

Theorem 2.1 (Noether). For every (infinitesimal) continuous transformation of matter fields,
Sl = X1 (p,0,0), that changes the Lagrangian density, £, by a total dem’vativ(ﬂ 0L = 0, F°,
the vector,

a a‘c a
] :WXI—F s (21)

s a conserved current, i.e. 0,7% = 0.

Proof. Upon an infinitesimal variation to the matter field, d¢! = X1 (i, 9,0),

oL oL
L =—X' L (XT). 2.2
F= 0 e’ A 2
Therefore,
oL oL oL
o= == = 0| = | | X' + 0, X', 2.

= (5= (00 ) )X+ 2 (™) 2%

Hence, when the Euler-Lagrange equations hold,

oL

0=0, =r X' — F° 2.4
(a ' = F). 24
which is exactly 0,7 = 0. O

'If £ changes by a total derivative, the action is invariant, which is why §p! = X' (i, d,) can be called a
“symmetry” of the system.
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Corollary 2.1.1. Q = [ j°(Z,t) d*Z is conserved, i.e. T = 0.

Proof. Rewriting 0,j% = 0 as 9,j° + V - j = 0,

d@ 07°(Z,t) 5.

— = [ ————=d’7 = V. =0 2.5

= i - [vi@ , (2.5
under the standard assumption that fields vanish sufficiently quickly at infinity. O

Integrating a continuous, infinitesimal symmetry, X', naturally leads to a finite symmetry; X’
effectively “generates” a finite symmetry.

Therefore, the study of symmetry in physics is intimately connected with the application of Lie
group theory, where elements of the Lie algebra are the generators and the exponential map
“Integrates” the infinitesimal elements to produce a finite group element - see e.g. [6] complete
mathematical details.

The fundamental postulates of special relativity can then be re-framed as saying the symmetry
group of spacetime is the ten-dimensional, proper, orthochronous Poincaré group, ISOT(B, 1).
A convenient choice of basis in its Lie algebraﬂ, i0(3,1), is one consisting of the generators
of spacetime translations, P,, and Lorentz transformations, M., = —M,,, with defining Lie
brackets,

[Maba Mcd] = 277d[aMb]c - 2nc[aMb}da
[Pcw Mbc] = 277a[bpc]7
[Pu, P] =0 (2.6)

Applying Noether’s theorem to infinitesimal spacetime translations, rotations and boosts leads
to the conservation of total four-momentum, total angular momentum and velocity of the cen-
tre of energy of the system respectively [5]. However, Noether’s theorem is not just applicable
for spacetime symmetries. One can consider gauge symmetries, internal symmetries etc. and
there exists a generalised Noether’s theorem to accommodate for them all - see e.g. [7]. While
fascinating in its own right, it is somewhat tangential to my research topic.

From hereon, I will be working in curved space - the domain governed by general relativ-
ity. For the rest of the thesis, I will be working on an arbitrary, connected, four-dimensional,
orientable manifold equipped with a Lorentzian metric. In curved space the story is more
subtle. Not only are there matter fields, the metric, g, (), is itself dynamicalﬂ Matter fields
contribute to the energy momentum tensor, 77" (z), but the metric - and hence the gravita-
tional field - does not directly. Rather than Noether’s theorem, for spacetime symmetries in
curved space, it will be more fruitful to take an alternative perspective.

ISO'(3,1) is the symmetry group of flat space; the task is to find the equivalent for a curved
spacetime. The main defining property of ISO'(3,1) is that for any (A,a) € ISO'(3,1), the
spacetime interval is preservedﬂ under z'® = A“bxb + a*, i.e. Poincaré transformations are
isometries of the flat space metric, 74.

Thus, to find the symmetry group of a manifold, one must find its isometries. While objects

2As10(3, 1), ISO(3, 1) and ISO'(3, 1) all share the same neighbourhood of the identity, all of io(3, 1), iso(3, 1)
and is0'(3,1) are the same.

3For now, I will treat the metric as fundamental, rather than the vierbein/tetrad, e,™. This will not be the
perspective I will take later, but it will be more convenient for now.

4The A% > 1 and det(A) = 1 conditions pick out the connected component (based on the manifold structure
of the Lie group) of the identity element, (I,0), and thereby prevent space or time inversions.



transform tensorially under general coordinate transformations in general relativity, there are
actually no pre-conditions on the isometries of the metric. The same way Noether’s theo-
rem considers infinitesimal symmetries and then builds finite symmetries via the Lie group-Lie
algebra correspondence, the standard approach is to consider infinitesimal spacetime transfor-
mations which leave the metric invariant.

Let '™ = 2™ — £™(x) be an infinitesimal spacetime transformation. By the tensor transfor-
mation law,

OxP Oz
Gonla) = 2 T () (2.7
Since I'm only working to 1st order in £ (z) for an infinitesimal transformation,
ox'™ " " ox™ "
T 0" — OpM () = S a4 0™ () . (2.8)
Together, they imply
I (@) = G () + O (67(2)) gpn (2) + 00 (67()) Gpm () - (2.9)

Then,

OGmn(T) = g;’nn(x) - gmn(x)
= Gmn(T + &) + 0 (§(z + 5))gpn(x +&) + an(gp(m + 5))9Pm(x + &) = Gmn()
= &(%)0pgmn () + O (&7 (7)) gpn () + 0 (€ (%)) gpm () - (2.10)

As with almost anything in differential geometry, tensorial equations are preferable. In this
case, the required expression turns out to be V,,&, + V,.&,, since

men + Vnfm == mfn + angm - Fpmngp - Fpnm’fp
= On(9pn€") + 0n(9pm&") — & (OmGnp + OnGpm — OpGmn)
= 0Gmn - (2.11)

Therefore, ™ (x) induces an isometry of the metric if and only if V,,&, + V,.&n = 0.
Definition 2.2 (Killing vector). A four-vector, £™(x), is known as “Killing” if and only if

Vikn + V., =0 <= V(mfn) =0. (2.12)
Theorem 2.3. The set of Killing vectors forms a Lie algebra.

Proof. Since the defining condition, V,,&,+V &, = 01is a linear PDE, the set of Killing vectors
automatically forms a vector space. All that is left to show is that given two Killing vectors,
€™ and (™, their Lie bracket, [¢, (™ = £"0,(™ — ("0,£™, also satisfies the defining condition.
See [§] for a proof of that property. O

Then, the Lie group-Lie algebra correspondence can be used to generate finite spacetime sym-
metries, ¢ @2 and such elements from a subgroup of the symmetry group of the manifol.

Just as Noether’s theorem generates conserved quantities from symmetries, Killing vectors
too generate conserved quantities - most famously along geodesics. Recall that if A is an affine
parameter for a geodesic, then a particle’s position along the geodesic, ™ (), satisfies

dz"(\) o, dz™(\) d2x™(\) dz™(\) daP()\)
D) o V= e I

5The manifold can be “geodesically incomplete,” so calculating ef” (*) alone can leave the story of manifold
symmetries incomplete too.

v, + 1, (@(N))

z)0

=0. (2.13)




Theorem 2.4. For any Killing vector, £™(x),

dz™(\)

n(a() =

(2.14)

s conserved along a geodesic.

Proof.
d dz™ dz” dz™
TN m 3~ ] — _an m N
dA (f dA ) dA (§ dA )
dz" dz™ dz™
O Vn<§m Y ) as &y, Y is a scalar
_dde” o
odh da dA
_dd”
odh da
=0 by the Killing condition (2.15)
O

da™
Vikm + gmﬁvn

Vném) +0 by the geodesic equation

In classical mechanics, one can circumvent differential equations by determining conserved
quantities and analysing the subsequent algebraic equations. Likewise, in curved space, one
can avoid solving the geodesic equation directly by finding the metric’s Killing vectors and
utilising the corresponding conserved quantities. However, sometimes a metric possesses fewer
independent Killing vectors than required to completely determine a particle’s motion.

The middle of the 20th century saw a spectacular new development in the analysis of free-fall
trajectories. Unlike the Schwarzschild and Reissner-Nordstrgm metrics, which were discovered
early in the development of general relativity, it took until 1963 to determine the Kerr metricﬁ7

2 2. .2
5 12 r# + a*cos*(0)
(ds)” = —(d?) +T2—2GMT+CL2

2GMr 9 9
12 + a’cos?(0) (asin*(6)dg — db)”, (2.16)

(dr)? + (r* + a*cos®(0))(d0)* + (r* + a?) sin®(0)(de)?

to describe a rotating black hole - see e.g. [9] for a brief review. Here, M is the black hole’s
mass and a is a constant measuring its rotation. The lack of spherical symmetry meant it was
a much more technically challenging task to determine geodesics in the Kerr spacetime. There
are still two Killing vectors, d; and 0y, but it turns out they are insufficient to completely
specify trajectoriesﬂ The crucial piece of insight was that the Kerr metric possesses something
higher order than a Killing vector.

Definition 2.5 (Killing tensor). A symmetric tensor, ™ ™(z), is called “Killing” if and
only if

yingmima) — . (2.17)
Theorem 2.6. For any Killing tensor £™ ™ (x),

dz™(A)  da™e(A)
dA dA

Emy-ma (T(A)) (2.18)

15 conserved along a geodesic.

6T have stated the Kerr metric here in Boyer-Lindquist coordinates.
79, and d, can be seen to be Killing vectors because none of the components of the metric are dependent
on t or ¢. Hence, translations along the t or ¢ direction leave the metric invariant.

7



Proof.

i ¢ dx™ dg™e B dz™ o, (¢ dx™ dx™e
A\ g d\ IS D e DY d\

dz" da™ dx™e
_ﬁv”(&”r“m“ dx  dA )

da™ dz™ dgme
T an Ty Vb
L dam™ da™i dg™e da™ _ da™

T lmime dx dh dh da VrTaa
dz™ dax™ dx™e
Sy ek O
=0 (2.19)

g

Not every Killing tensor of rank > 2 can be written as a product of lower order Killing tensors
or Killing vectorsﬁ [8]. Hence, going to higher orders has the potential to reveal previously
undetected conserved quantities. Indeed, for the Kerr spacetime it was discovered

Emn = 2(r* + a®cos*(0)) A(mBun) + r°gmn  where

— 1 2 2 2 9
Am:'rQ—ZGM'r’jLaZ(r +a’,r" —2GMr +a°0,a) and
1
B = 24 a?, —r® +2GMr —a?,0 2.20
2(r2 + a2cos?(0)) <T +as, =1+ r—a-,Val, (2.20)

is a Killing tensor and greatly simplifies the analysis - see [9] for further detail. Likewise, in this
thesis it will prove to be fruitful to work with higher rank tensors, rather than only vectors, to
unearth higher symmetries.

However, my project will not deal with standard general relativity. Instead, I will be con-
cerned with conformal field theory. To describe exactly what this means, I will begin by
slightly changing the differential geometry perspective I employ. Rather than work with curved
space indices, for the rest of my thesis it will be essential to work in the vierbein approach
to differential geometry’] A vierbein is a new tangent space basis, {€,”(2)0,,}2_,, such that
Nay = €, (x)e," () gmn(x) for all points, z, in the manifold. The vierbein is now the funda-
mental field and the metric, g, (7) = e,,%(2)e, ()N where e, @ is the inverse matrix of e,™,
is derived from the vierbein. Since a choice of vierbein is only unique up to local Lorentz
transformations, €/,™(z) = (A™1)®, (z)e,"(z) for A%(z) € SO'(3,1) allows one to construct
local representations of the Lorentz group.

Therefore, in the vierbein approach, field theories are covariant not just under general coordi-
nate transformations, but also local Lorentz transformations.

Adopting the vierbein approach allows me to deploy the spinor formalismm and thereby de-
scribe the dynamics of half integer spin particles in curved space.

8In somewhat technical language, not all Killing tensors can be seen as elements of the universal enveloping
algebras of lower order Killing tensors and Killing vectors.

9Although I didn’t use it for that purpose, the vierbein approach works fine for general relativity too; it is
nothing specific to conformal field theory.

10For my spinor conventions, see appendix [El For a comprehensive introduction to spinors, see appendix @



The fundamental, new feature of conformal field theory lacking in general relativity is in-
variance under “Weyl transformations.”

Definition 2.7 (Weyl transformation). A Weyl transformation is a change to the vierbein of
the form, ¢’ ;™ (z) = e@e ™ (x), for some scalar field, o(z).

In a conformal field theory, the vierbein, inverse vierbein, metric etc. are only relevant up to
scale. Note that the theory’s invariance under Weyl transformations can be predicated on a
corresponding transformation to the matter fields - this is exactly analogous to the quantum
mechanics of particles in an electromagnetic field where a gauge transformation to the fields
requires a point dependent phase transformation to the wavefunction for the equations of mo-
tion to remain unchanged.

In this thesis, rather than attempt to characterise symmetries of action functionals or space-
times, I will be studying symmetries of the equations of motions themselves. In particular, I
will analyse two differential operators which turn up in conformal field theory - namely the
conformal d’Alembertian, A = V°V, — %R, and the massless Dirac operator, v*V,. When
quantised - although the actual quantisation is beyond the scope of my thesis - these equations
turn up in the description of massless spin-0 and spin-1/2 particles respectively.

Analogous with the study of symmetry in general relativity, I will need the conformal ver-
sions of Killing vectors and tensors to describe the symmetries I will be studying.

Definition 2.8 (Conformal Killing vector). A vector, £*(x), is called “conformal Killing” if
and only if

1
Vgl 4 v = §n“bvc§9 (2.21)

Definition 2.9 (Conformal Killing tensor). A symmetric and traceless tensor, £ (x), is
called “conformal Killing” if and only if the traceless part of V(&%) js zero.

Note that the former definition is just a special case of the latter definition.

Since I am interested in symmetries of the equations of motion, rather than study isometries of
the vierbein or metric, it makes sense to study the transformations which leave the covariant
derivative unchanged.

Theorem 2.10. Under infinitesimal general coordinate, local Lorentz and Weyl transforma-
tions, i.e. '™ = z™ — ™(z), ¢, (x) = e, (x) + K, (z)e,"(x) with Ky = —Kp, and
/I m

M (x) = (1+0o(x))e,™(x) respectively (€™, Kq and o all infinitesimal), the covariant deriva-

tive changes as

1
0V, = fbe + §Kbchc; Vol +0V, — vb(a>Mab : (222)

Furthermore, 6V, = 0 if and only if £*(z) is a conformal Killing vector, K" = %(bec —Veed)
and o = ivaga.

Proof. See [10] or appendix [A] O

If one is dealing with a conformal field theory, the theorem means that under the conformal
Killing vector based transformation just described, the physics is unchangedm. However, the

1 General coordinate transformations, local Lorentz transformations and Weyl transformations are all part
of the symmetry group of a conformal field theory.



matter fields must change to compensate. Since the equations of motion will be built on V,,
they will stay the same upon 0V,.

Therefore, the new matter fields will satisfy the same equations of motion as the old matter
fields, i.e. the conformal Killing vector based transformation induces a symmetry operation on
the matter fields. It is the main task of my thesis to study the symmetries that may arise.

First consider 2™ = 2™ — ¢™(z). Then, if a matter field is described by a tensor field™]
T'(x), since ™ is infinitesimal,

0T (x) =T (x) — T(x)

=T+ - T()
=T'(2') + ™ ()0, T (2') — T'(x) to first order

=" (2)0nT (2)
— ()T () — %gb(x)wbcd(x)MCdT
()T () — %kbe(x)MbcT (2.23)

where K" = &;w®¢. Likewise, under a local Lorentz transformation,

6T = %KbC(x)M,,CT, (2.24)
and a more complicated transformation may arise based on the Weyl transformation. However,
in all three cases, 0T takes the form of a 1st order differential operatorﬁ acting on T'. Further-
more, when K% and o are determined in terms of £ as per theorem all “coefficients” in
the differential operator are also determined in terms of £°.

The net result is that in a conformal field theory, a conformal isometry induced by a conformal
Killing vector, £*(x), induces a first order differential operator symmetry on the matter fields.
Motivated by this result, I will be studying symmetries of the following type.

Definition 2.11 (Higher symmetry). Given a differential operator, ®, acting on a tensor
field, T', a higher symmetry is a scala@ linear, differential operator, D, such that D DT = 0
whenever DT = 0.

Corollary 2.11.1. Provided D is a non-degenerate differential operator, D is a higher sym-
metry if and only if ©D = D'® for some other differential operator, D'.

I will usually adopt the former definition in this thesis. These operators, D, are symmetries
in that they take solutions to solutions. They are “higher” in the sense that D may not be a
first order differential operator and there is no a prior:i link between D and conformal Killing
vectors. A higher symmetry is a linear operator by definition. In principle, one could also
look for non-linear transformations that take solutions to solutions, but I won’t do that for
simplicity and also because it can be shown that in many cases non-linear symmetries do not
exist anyway [11].

12T will suppress the indices on the tensor field, T'(x). The only assumption I make is that T'(x) does not
have any curved space indices. This is fine because given any tensor, it can be converted into a tensor without
curved space indices via vierbeins and inverse vierbeins. Thus, T'(z) is a general coordinate scalar.

13In the terminology I will employ in this thesis, Lorentz generators will count as 1st order differential
operators because they appear in theorem and they are related to the commutator of two covariant
derivatives.

14D is a scalar in the sense that DT is the same tensor type as T

10



Once one finds an nth order symmetry operator, D, it immediately implies the existence
of symmetry operators of order kn for any k£ € N, namely D*, D composed with itself k& times.
Therefore, an equation of motion possessing a 1st order symmetry operator - e.g. as equations
of motions for matter fields in conformal field theories should by the reasoning above - possesses
symmetry operators of all orders.

However, it may be the case that not all symmetry operators can be written as a composition
of lower order symmetries. Thus, there is still the possibility of unearthing a truly “higher”
symmetry, just as the Killing tensor in the Kerr metric provided a new conserved quantity not
derivable from the Killing vectors alone. Hence, it still pays to study higher order symmetries
and study symmetries of different orders separately.

The original motivation for studying higher symmetries was a purely mathematical task -
the solution of partial differential equations on non-trivial manifolds. Unlike the textbook sep-
aration of variables typically taught in the undergraduate curriculum, the best that could be
hoped for on arbitrary manifolds for most equations was the following [12} [13].

Definition 2.12 (R-separability). Let ® be a linear, partial differential operator acting on
a tensor ﬁelﬂ T(x). Then, ® is said to be R-separable if and only if both of the following

conditions hold.

1

e 3 four functions, T (z™), each depending on only one of z°, ', 2% or 23 and 3 a

function, R(x), such that

T(x) = R(x) [] T (™). (2.25)

=0

e For each T™ (2™), 3 a linear, ordinary differential operator, ®™), such that T(x) sat-
isfies DT (x) = 0 whenever all four of the T (x™) satisfy D™ T™ (™) = 0.

When R(x) = 1, this definition reduces to the textbook definition. On the surface, R-
separability seems to have nothing to do with symmetry operators. However, by the 4th
quarter of the 20th century many deep connections between the existence of R-separable coor-
dinate systems, higher symmetries and Lie group theory were discovered, including attempts to
classify separable coordinate systems based on higher symmetries’ eigenfunctions and spectra
[14, [7, 12]. In many ways this development was a throwback to Sophus Lie’s original motiva-
tion for studying the concepts that today bear his name. Like my discussion on the existence
of 1st order symmetries for conformally invariant equations of motion, he too was looking at
the effect of local transformations on differential equations - trying to find similarities between
equations previously thought to be disparate. In the early development of R-separability, much
of the progress was made on the Kerr spacetime. It was convenient - it had a known metric
of moderate symmetry and a known Killing tensor. But in subsequent years, the theory has
grown to a wide variety of manifolds and encompasses many famous equations from mathe-
matical physics [12]. Again, it is fascinating, but tangential to my thesis, so I will not dwell on
it any longer.

Another reason to study higher symmetries is the associative algebra generated by composing
and taking linear combinations of higher symmetries. In the last two decades or so, a number
of deep connections have emerged between the algebra of higher symmetries and the algebra
of various higher spin fields. In conjunction with the AdS/CFT correspondence, these devel-
opments have brought a renewed focus on computing the higher symmetries of the equations

15 Again, I have suppressed indices on 7.
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of motion of free, massless particles [15, [16]. Before the higher symmetry algebra is useful for
application though, it requires some refinement.

Definition 2.13 (Equivalence relation of symmetries). Given two higher symmetries, Dy and
Dy, of a differential operator, ©, let Dy ~ Dy if and only if D1 — Dy = d® for some other
differential operator, d. Then, ~ is an equivalence relation.

Proof. Dy — D; =0=0x% = ~ is reflexive.

If Dy ~ Dy, then 3d such that D; — Dy =d® = Dy — D; = —d® = ~ is symmetric.
Let Dy ~ Dy and Dy ~ Ds. Hence dd;, dy such that Dy — Dy = d1® and Dy — D3 = dy ®©
— Dy — D3 = (dy +d3)® = ~ is transitive.

Therefore, ~ is indeed an equivalence relation. O

Two symmetries linked by ~ are essentially trivially related. It is not interesting to treat
them as separate objects. Instead, the much richer algebra is the one consisting of equivalence
classes of symmetries under ~. Therefore, throughout the work, it will suffice to find a single
representative for each equivalence class. Thinking in terms of equivalence classes is identical
to the following.

Lemma 2.14. The set of trivial higher symmetries, D = d®, forms a two-sided ideal in the
algebra of higher symmetries.

Proof. Let D be a trivial symmetry and let p be an arbitrary higher symmetry.

Therefore, D = d® for some differential operator, d, and Dp = p'® for some differential
operator, p'.

Hence, pD = pd® = (pd)® = pD is a trivial symmetry.

Likewise, Dp = d®p = dp'® = (dp)® = Dp is a trivial symmetry too. O

The set of equivalence classes discussed above is nothing but the algebra of higher symmetries
quotient-ed by the two-sided ideal of trivial higher symmetries. As a matter of personal taste,
I will largely talk in terms of equivalence classes as opposed to quotient algebras. However, the
quotient algebra perspective has proven to be useful in higher spin field theory applications [16].

At a practical level, the equivalence relation will be extensively used in sections [3.2] and
to simplify the terms appearing in potential symmetry operators. For example, it is possible
that D;T # DyT unless ©T = 0. That can only happen if D; — Dy = d® for some d, or
equivalently Dy ~ D,. Even before the equivalence relation though, it might be that D; # D,
but DT = D,T because of the specific form of the tensorE], T. In such scenarios, I shall
consider Dy to be equivalent to D, provided it is clear only D and Ds’s actions on a particular
tensor type are relevant.

But first, to make progress on separation of variables or higher spin fields in the ways I have
outlined, one must actually know the higher symmetries of different differential operators; it
will be my task to develop techniques to compute them. As aforementioned, I will be focused
on two operators in particular. They are the conformal d’Alembertian, ® = A = [0 — %R,
acting on a scalar field, ¢, and the massless Dirac operator, vV, acting on a four-component
Dirac spinor, ¥. Conformal Killing vectors and tensors will make numerous appearances in
subsequent chapters, but actually finding a conformal Killing vector or tensor on a given man-
ifold (if one exists) is beyond the scope of my thesis.

I6For example, such a situation may arise if T is a scalar and D; and D, differ by a Lorentz generator.
Lorentz generators annihilate scalars and so D; and Ds still give the same result when acting on T', even
though D; and D, are not strictly equal.
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Several papers discussing similar topics have been published in recent years - see [17, 18] [19]
for examples. The most complete account though, is [20], which contains some overlap with
and extensions to the results I will derive about 2nd order symmetry operators. Despite some
similarities in techniques, my work is completely independenﬂﬂ.

17 Also, they did most of their calculations on Mathematica where as I did them by hand.
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Chapter 3

Higher symmetries of the conformal
d’Alembertian

3.1 Action for the conformal d’Alembertian
The conformal d’Alembertian, A, is defined as

1 1
A=0--R=V*°V,—-=R. (3.1)
6 6
In this thesis, I will only be concerned with the action of A on scalar fields, ¢(x). As a first
step towards the equation I will be analysing, Ay = 0, consider the theory of a free, massless,
real, scalar field in flat space. It is described by the action,

§=-7 / 0 (9)u() d'a . (3.2)

which has the massless Klein-Gordon equation, [y = 0, as the equation of motion. When
lifting an action to curved space, the standard procedure is to change partial derivatives to
covariant derivatives and change the integration measure from d*z to e d*z where e is det(e,,*).
However, this procedure is incomplete. Actions differing only by curvature factors coincide in
flat space. For the free, massless, real, scalar field, one possible resolution is to impose that
the action should be invariant under Weyl transformations in curved space. Then, it can be
shown the curvature terms are fixed so that

1 1
S = —5/ (V“((,O)Va(cp) + 6R¢2)6d4x where e = det(e,,”) (3.3)
and S is invariant under the Weyl transformation, ¢/, (x) = e@e ™ (x), provided

¢'(z) = e@p(z). Finally, the equation of motion for ¢ from this action is Ag = 0.

This same action can be derived - along with its Weyl transformation properties - from an
alternative, but equally interesting, perspective. Consider the following “Weyl invariant” for-
mulation of (vacuum) general relativity described in [10]. The key idea is the observation that
given an action, S[e,™], constructed entirely out the vierbein, Se,™/¢]| is invariant upon a
Weyl transformation, e, — e%¢,™ and ¢ — €% for arbitrary scalar fields, o(z). Hence, given
any field theory, introducing a gauge field, (), makes the field theory Weyl invariantl] I will
apply the formalism to the Einstein-Hilbert action,

/ Red'r. (3.4)

1f Sle,™/¢] = S[e,™], it means S[e,™] was already a conformal field theory.

5= 167G
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Hence, denoting all new variables with primes, ¢’ = det(e,,"p) = ep?. Since ¢/,™ = ¢,/ is
formally identical to a Weyl transformation with e = 1/, one immediately gets

o= (G)) -ov (m ()7 (2 (7))
= (R — 60(In(p)) — 6V*(In(¢)) Va(In(p)))/¢*. (3.5)

Then, since V, = ¢,"V,, and V,, = J,, when acting on a scalar, V,(In(y)) = Va.(p)/e.
Therefore,

H(ln(p)) = VY(Val(p)/v)

__V(@)Valp) , o) (3.6)

©? ©

which yields

=z ot @ ot
_ ; _ 65(;90) (3.7)
Thus,
R'e¢' = Rep® — 6ep(p). (3.8)

It will be more convenient to re-write the 2nd term with pO(¢) = V(¢oV.p) — V(@) Va(p)
since [ V(pVap)ediz = 0 by the generalised Stokes’ theorem. The action is then

1 1
I / ld4 — 2 a d4 ) )
S 167rG/R6 T= 1o (Rp™ + 6V (p)Vau(p))ed (3.9)
Finally varying S’ with respect to ¢,
1
/r a 4
e e (2Rpop + 12V () V4 (d¢p))ed z . (3.10)

However, V(¢)V,(dp) = Vo(V*(p)dp) —O(p)dp and the first term on the RHS integrates to
zero. Hence finally,

p_ 1 _ 4
55 = / (Re — 601(p))dpe d'z (3.11)

and therefore the Euler-Lagrange equation for the gauge field, p(z), is Ap = 0. It is this
final equation whose symmetries I will consider in this chapter. Substantial work along this
endeavour has already been attempted by Eastwood [17].

3.2 Structure of the symmetry operators

As per definition 2.11] candidate symmetries, D, must be scalar combinations of V,, M, and
tensor coefficients, % (x).

Lemma 3.1. Lorentz generators do not appear in higher symmetries of .
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Proof. Since ¢ is a scalar, My, ¢ = 0.
Therefore, any M,;, that appear must appear on the left of derivatives acting on . However,

k
MuVe, Ve p = Z(UWVCI Ve Ve = Ve, Var Ve )p, (3.12)
i=1
which is a sum of terms with &k derivatives on ¢, but no Lorentz generator.
Hence, all M,,s can be absorbed into terms with no Lorentz generator on them. Thus by
~, the equivalence [2.13| there is no need to consider symmetries with M,, as there will be
symmetries without Lorentz generators in the same equivalence class. U

Therefore, to ensure that the differential operator is scalar, and noting that derivatives acting
on tensors other than ¢ can be absorbed into lower order terms, the most general nth order
symmetry of A is

= Y, -V, (3.13)
k=0

Lemma 3.2. Any coefficient of a term with multiple derivatives can be taken to be symmetric
and traceless.

Proof. Consider the action of a term with multiple derivatives, i.e.
EMNTN gy - Vay, (3.14)

on the scalar field, ¢. Suppose there is an antisymmetric component between the ith and jth
indices of £*% . Then,

fal"‘akval .. Vak

1 R R ) 1 aj-a;-ai--a aj-a;--a;-a
25(50,1 Qi +€U41 j i k>va1"'vak+§(£ % J k_f J 7 k)val‘,,vak
1
— §(€al.~.ai...a‘j...ak} _I_ SalA..a/j..Aai...ak)Val . Vak
1
+ §£al"-ak(va1 ViV Vg = Vi -V -V, - Ve, ) (3.15)

But now, the 2nd term in the previous equation can be reduced to sum of commutators.
Since commutators reduce the order of derivatives by 2, the antisymmetric contribution can be
absorbed into lower order components. Therefore, the coefficients can be taken to be symmetric.
Next, suppose that £ % = ¢(@1a) has non-zero trace. Splitting into the trace and traceless
components,

gal...akval ... VakSO

1
- (galmakvm a1a2€ bas- ak) th e VakSO + -1

4 a1a2€bba3makVa1 T vak@

= (ﬁal'"a’“val g, ak) Vo Vg + igbbagmakljvag Vo
(éa1 Ve, — a1a2£ " ak) Vay = Vo + igbb%makvas Ve Uy
+ 5 bas---ay [D VQJ L ak

_ (gal.-.akval Lymoag baran Vg, v, o+ igbbasmakv%}'”v@k(}%@)

+ gbb‘“ [0, Ve, - Va @, (3.16)
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which shows given Ap = 0, the trace component can be absorbed into terms with only k& — 2
derivatives on ¢.
Therefore any trace in the components can be removed by ~. U

Hence, by the lemma, the most general nth order symmetry of A is
DM — Zfaln-akval o Vak (317)
k=0

with all £%% symmetric and traceless.

3.3 Top component for nth order symmetries

From here on, the two-component spinor formalism will be essential to the discussion. Again,
if required, refer to appendix [D] for an overview of spinors and appendix [E] for my spinor con-
ventions.

With the benefit of hindsight, I will begin with the following lemma.

Lemma 3.3. A tensor, £%7%  is symmetric and traceless if and only if the corresponding spin
tensor, gar--andl---a’n’ satisfies gar--ana’r"a’n — g(al---an)(dr--dn)‘

Proof. The lemma is vacuously true for n = 1.

I will begin by proving symmetric and traceless = ¢ anddn — ¢(aran)(@i-an) For p > 2,
I will prove it by induction.

By definition, £ayasdras = (a1 )ards (Tas)anan €% Any type—(2,2) spin tensorf] can be “decom-
posed” as follows.

Sarazards = Earas)(draz) T §(aran)faias] T Ejaras)arda] T §(a1az)(a1ds)
1

ynz iy
- _550410428 g,uu(a'la'z) - 560210225 5(041042)111) + 180&1&250210226

+ &(aran) (1) (3.18)

nv _fiv
€ g,uu;lu'

where the 2nd line follows from the fact that every antisymmetric rank—2 tensor is proportional
to the Levi-Civita symbol with 2 indices; €*€,,(a;ds)s 5””5(%&2)#,) and 5“”5””§WW are the
corresponding proportionality constantsﬂ However,

5W’£/W(021022) = §€MV(£MVC¢1052 + g,ul/dzdl)

1 v
= —56 M(gw,oglogg + S/woz'QOil)

1
- _Egﬂl’ (€V,LL051022 + gl’#del)
1
= _§€HV(€uudgo€1 + Euvaray) Dy £7%'s symmetry
—Euygul/(dldz) ) (319)
2When talking about spin tensors, I take type—(m,n) to mean there are m undotted and n dotted indices,

not that the tensor has m contravariant and n covariant indices.
3This can be explicitly checked using the identity, ,56"" = 87, 6" 5~ 0+, 0", applied to equation
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which means €&, (q,0,) = 0. Similarly, 5”"5(0[1&2)/1,; = 0 as well. For the third term,

_ Bt
f;w;'u'/ — Sup

— —2€aa
=0 as £"1? is traceless. (3.20)

etveh

And hence ultimately §u api00 = §(a1az)(dian) @S Tequired.

Next, assume the statement holds for some n = k to show that implies the statement holds for
n==k+1 as well.

By assumption, &g, ...q,,, is symmetric and traceless.

Therefore, &g, ...q;,,, 18 symmetric and traceless in its first £ indices alone.

Hence, by the inductive assumption, &u, . ayiar—drer = S(ar—ap)(di—an)ariidni - Like with the
base case, I will re-write the last pair of indices in terms of symmetrisations and Levi-Civita
symbols.

Decompose &a,..ayié1-cpyy A

é(al"'ak)(dl"'dk)ak+1dk+1 = Aal'“ak Bdr“dk Coék+1 de+1 (3'21)

for some Ag,...ap» Bay-apr C and D

- with Ay, ...q, and By, .., being symmetric in all their
indicedd

Qpt1

k
1
Aty Copyr) = CE <k!Aa1...ak(JaM +EDY Am...@i...amcai)

=1

k
1
= (Aal...ak Cops + Aal...&i...%lc&i) (3.22)
i=1
To manipulate each of the terms in the sum,
8ak+1aiCﬁA5al'“di"'ak = 50{k+1a¢5ﬁ707145041---di---ak
G 670 ) Oy ABayocyemay,

Apt1 (6% Akt1
= Copi1Aaray, — CoajAayiaps - (3.23)
Therefore,
COtiAal"'di"'ak+1 = Cak+1Aa1...ak — Eak+1aiCﬁAﬁo¢1~~dimak (324)
Substituting this back into equation [3.22
1
Aas-ar.Coner = AererConcr) + 177 > oo C Apo i, - (3.25)
i=1
Therefore,
1 o -
By i Degyy = Blon i Dényr) + Frl > earna D Big, b, (3.26)
i=1

“Technically Ag,...q, is a function of the index, a1, on Ca,,, to get a true tensor product. This is
because in a tensor product, bases elements are products, e.g. €1 ® --- ® e ® ex4+1; the elements are not
just products of lower order tensors. However, Aq,...q; Ca,,, is a convenient notation to explicitly show the

separation/independence between the two sets of indices. The alternative would be something like &q,...ay,ays s -
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as well. Putting both parts together,

k
1 Z
f(aynak)(oh~-~o¢'k)ak+1dk+1 = (A(a1--~o¢k0ak+1) + k:—‘l—l gak+1aiOﬂAﬁal'”di"'ak)
i=1

k
1 .
X (B(dl"'dedk+1) + k+1 Z€dk+1deﬂBBd1"'&j"'dk> : (3.27)

j=1

Re-arranging,

k

1 .

— § ' B

£a1---ak+1d1---dk+1 - é(a1~~-ak+1)(d1..-dk+1) _'_ k—_H — gdk+1di£(a1"'Oék-‘-l)éél"‘&i"'dk/é
1=

k
1
- B
+ k1 ;6ak+lai§a1"'&i---akﬁ (11
1 e .
B B
T (k+1)2 ZZ60‘k+laz“€dk+1djgal...&i...akg Gy GG (3.28)

i=1 j=1

It is now time to use the fact that £* %+ is symmetric and traceless. From the tracelessness,

B B _ (Lay . (=b\AB
£a1--~&i~--akﬂ Oéltgtlakﬁ o (U >56(U ) 5041"'&i"'akdl“'&i”'dkab
_ ab
- _277 50&1"'&i"'akéél"‘&i"'dkab

= -2 a

Lo Qe ey -GG
=0 as £+ s traceless. (3.29)

Next, from the symmetry, one can swap any pair of indices, (o, d;), with any other pair,
(aj, ;). One can also freely swap indices within a symmetrisation. Thus,
B

B
6 : < . . — 6 - ° . . .
ak+1a1§al...ai...akﬁ (Ge1-+Gupg1) azak+1€a1...ai...ak5 (Grp -+ Gegoge1 -6

= ol g , (3.30)

&1~~'&i'~~akﬁ (d1~~~dk+1)
Q410G al"'di"‘akﬁ (dl"'dk 1) ()

Similarly, 8dk+ldi£(al"'ak+1)d1---&i---d,€ﬁ.ﬁ =0 as well.

Therefore, o, ..apiiardnris = E(arapi)(@adpi1):
Hence, the induction is complete and symmetric and traceless = {o,..anaian = §(ar-an)(@1-dn)>
or £orrandian — glaran)(@idn) with indices raised, ¥n € N.

It remains to show g1 andiadn — (ar—an)(@i~en) — gymmetric and traceless for n > 2.

Symmetry is automatic since that only requires that swapping pairs, (o, d;) and (o, &;),
leaves the tensor unchanged. However, here there is already symmetry in the dotted and and
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undotted indices independently, not just in pairs. For the trace,

1

ga _ __gaa
aas - an atas - an

2
1 o

_ __—.ap_aB .

- 28 € gaﬂdﬂagman
1

_ _—paBgaBe
= 72 € Cpadharan

1 .
_ 1 paase
= 5% € Spaapar-an

1 ;s

_ Ba Ba

= 57
1

_ T eac
- 2 aqas - +an

e (3.31)

Therefore, & = 0, thereby completing all parts of the proof. O

aas-an
Corollary 3.3.1. Hence, by definition, a symmetric and traceless tensor, £ is conformal
Killing if and only if

VBB gor-—andi-an) _ (3.32)

Having established these preliminaries, I am ready to prove the main theorem of this sub-
chapter.

Theorem 3.4. For any higher symmetry, D™, of A, the top component, €4 is conformal
Killing.

Proof. In vector notation,

n

DM =3 " gm Y, -V, . (3.33)

k=0

However, the same operator can be re-written in spinor notation as

D — Zéal-"akdl'"%vmdl A V. (3.34)

k=0

where I have scaled each of the £ ax@i—dr hy (—2)F without loss of generality so that the
previous equation does not have any unnecessary numerical factors in it. Likewise, in spinor
notation, A = 0 — 3R = —3(V**V,, + 3R) and the leading factor of —1/2 may be ignored
as both Ay and AD™ ¢ are being equated to zero. Then, Ap = 0 <= V4V 40 = —%Rgp
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and since D™ is a higher symmetry,

0=ADMy
i 1 N i
= (v Vaa + gR) (Zf HYT --vakak>so
k=0
_ Z fal...akdl..-dkvadvadvaldl . vakdkw +2 Z vad(falmako’zl...dk)Vadvaldl . vakdk(;p
k=0 k=0
+ Z Vaavao'c(galmakalmak)vmm T Vako'ék(p + Z §R£a1--~aka1wakvaldl o vakdk(p
k=0 k=0
_ Z é-al..-ako'éy.-o'zk [vadvad’ valdl e v&kdk]gp +2 Z vao’z(gal.--akdlu-dk)vadvaldl . Vakak#?
k=0 k=0
3 T Vs 030
k=0

Now, since a commutator reduces the number of derivatives by two (at the expense curvature
terms), the term in the previous equation with the highest number of derivatives on ¢ is
Vs (gaandian )7 N oo+ Va4, This term has n + 1 derivatives on ¢ and all other
terms in the sums have fewer than n 4 1 derivatives on ¢.

Therefore, to get AD™p = 0, either this term must vanish on its own or further manipulation
needs to be done to reduce the number of derivatives so that this term can cancel with some
of the lower order terms in the sums.

By lemmas and , goradrdn — glonag)(@rdn)

Hence, in exactly the same way that equation [3.28| was derived,
Vad(falmandlmdn)vadvamﬂ e Vandn<90)

I O aanof P
gddiyy (& Q10 )Gy Qe Gen B
n+1 ; 55

— (v(a(dgal...an)al...dn) i

_|_

n ( N ) )
E Saazv aSOl] “'al'“OénBOl] an)

1

+ (n — 1)2 Z Z gaaigéédjVﬁﬁ_fal.--di..-anﬁdl.-.dj.udnﬁ) VaaVara, Vandn(sﬁ) . (3.36)
i=1 j=1

I will try to reduce the number of derivatives on ¢ for each of the terms in the sum.

n Z gaaiv(agéal...an)al...ai...anﬁ(Vad[valdl Veaiiai1> Vasa) Vana, ©) (3.37)

i=1

The 2nd term/sum in the previous equation now only has n — 1 derivatives on ¢ (at the cost of
some curvature terms) and hence need not be analysed further. As for the other terms, using
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the antisymmetry of € and the freedom to re-order indices within a symmetrisation,

Z gaalv al - al...ai---anﬂ(vaava alvalal e Vanansﬁ)
_ _ Z 8a1av a1 Qi a1---ai---anﬁ(Vaavalalvalal Ce vandngp)
_ Z gddiV(agfalMan)almaimanﬁ(valalv valdl e Vano'zn(p)

n
_ Z gddiv(agfal"'O‘")O"l"'di"'dnﬁ(Vadvaidivoqo'q o Vanan,
i=1

+ [Vaidia Vad]valdl e Vanan%O) .

Therefore,

Z gddiv(aﬁ'galman)dlm&imdnﬂ.(vadvaidivmm e VandnSO)

_ - Z Ay (a gor - )1+ anﬁ([vaidi’ Vaa]valal .. vandn@) 7
which also has only n — 1 derivatives on ¢. Similarly,

Z Eaaivﬂ(dgal...di...anﬂalmdn)(Vadvaldl . Vandn¢)
_ Z Loy (aé“ar“a"“anﬁal an)(v Vaie: Vara = Vandn@)

+ Z gaaivﬁ(dgal--.di...an,@m--.dn)(Vad[valdl Va1 Vara | Vana, @)

=1

(3.38)

(3.39)

(3.40)

where again the 2nd term/sum has has only n — 1 derivatives on ¢ and analogously with the

calculation above, the 1st term can be re-written as

Z gaaivﬂ(dgalm&imanﬁdlmdn)(Vadvaidivoz1d1 e vandn(p)

1 - ; Ay oGyl BOe -+ Cr
= _§Z€ao¢zvﬁ( gonGianfiin n)([vaidﬂvad]vmdl...v%dnsp)’

i=1
which likewise has n — 1 derivatives on ¢.
The only remaining sum in equation [3.30] is

n n
5 g gy G T
i=1 j=1
When ¢ = j in the previous sum,
gaaigddiv <€a1.--ai...an30¢1.--a]..nanﬁ)vaavalal ce vandn (SD)
_ vﬂﬁ(gal-..ai---anﬂal e Cvnﬁ)V Voqo'cl U VA T vanan<90)
— vﬁ . (€a1‘“Oéi.uan/@al“.Oéj.“anﬁ)valdl .. Vandnvadvaa(SO) + commutators

= __VB (gordianfon- by CV"ﬁ)de1 -+« Va,a, (Rp) + commutators,
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and all the terms in the last line have n — 1 derivatives on ¢. When @ # j,

Vi Vana, () + commutators.  (3.44)

(3

= Mgt Vﬁﬂ'(falm&i"'anﬁdl"'&jmd”’g)vaavam

Again, any term with commutators reduces the number of derivatives on ¢, so can be ignored
as far as analysing terms with n 4 1 derivatives on . For the remaining term in the previous
line, a special case of equation [3.28| gives

o S vadvaio}i

e 1 1 : 1 .
= g0%igt% (V(a(dvai)di) + §€aaivﬁ(dv,3di) + ieddiv(aﬁvai)ﬂ' + Zeaaisddivﬁﬂvﬁﬁ-) . (345)

In the previous line e**'V 4(4Va,)a;) = 0 and gaaiv(aﬁ Vai)ﬁ = 0 because of the contraction
between « and «; (in ¢ there is antisymmetry in those indices where as in the Vs those indices
are symmetrised). Also in the last term, I have created a vﬁﬂvﬂﬁ-. This term can be pushed
to the front of the queue of derivatives via commutators. The commutators reduce the number
of derivatives by 2 and the remaining term also does the same by V#/V pap = —Ryp /3. Hence,
the only term left in the previous equation is

L y
e et €00, V' (5 Voa) = —* IV’ (Vs

_ _%edé‘j(vﬁdvﬂdi + V7, Visa)

— %(vﬁ%vgm + V7, VM)

- %(Vﬁ"’j Ve — Ve, V7%)

- %[Vﬁdﬂ', \AE (3.46)

which again reduces the number of derivatives on ¢ by 2.
Going back to equation [3.36} the only term remaining is

V(a(dfal.--an)d1~--dn)(Vadvaldl . VandnSO) . (347)

The only way to reduce the number of derivatives on ¢ - like I already have for the other terms
- is to exploit the antisymmetry of € to create a commutator or create a trace (with a pair of es)
and generate a V®V 4 and use Ap = 0. However, neither of these techniques is applicable to
Vilagaran)ér-n) (G V4 -+ Va, 4, @) since V(@(@garan)dr-an) jg symmetric and traceless
by lemma [3.3]

Therefore, V(@(@gar=an)ér-an) (7 .V, 4 -+ Vo, a.¢) is the only term left in AD™ ¢ with n+1
derivatives (the maximum) on (.

Thus, AD™ ¢y = 0 is only possible if V(H&gar-an)didn) —

Hence, £ is conformal Killing by corollary O

This theorem was also given in [I7], but by very different means. By construction, equation
describes a conformal field theory and its conformal invariance is predicated on ¢ — e”¢ upon
a Weyl transformation, e, — e’¢,™. Hence, to have any physical significance, the symmetry
operator, D™ must be such that D™ ¢ — e?D™y as well upon a Weyl transformation. As
I will show in the subsequent subchapters, this condition is sufficient to fix the possible forms
of lower order terms in terms of the top component, £* . But to do that, I have to know
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how £ transforms under a Weyl transformation. The required transformation is found by
noting that as I have a conformal field theory, theorem must be preserved upon a Weyl
transformation. To that end, there is the following lemma.

Lemma 3.5. For £4% to remain conformal Killing upon a Weyl transformation,

e =e%,™, £ must transform by 0 = eT"ILM 0

Proof. 1 will prove the theorem in the infinitesimal case. The exponential map can be used
to lift the result to the finite caseﬂ given in the lemma statement. Since £*" is symmetric
and traceless, 0% must also be symmetric and traceless to maintain the conformal Killing
condition.

V/an+1§1a1---an — (van+1 + O,van_H _ Vb(O')Man+1b)(£a1"'an + 6€a1"'an)
= (1 4 o) Vaont1goatn 4 o1 o an

N Z vb<0) (naian+1£a1..‘&ib"'a" _ naibfal'“é‘ian-!—l“'an)
i=1
— (1 + U)van+1£a1-..an + V“n+15£al'“an

— Y (Vi goraant g (g)gor-cn (3.48)
=1

It will be easiest to impose the conformal Killing condition in spinor notation as per corollary
3.3.1. When going to spinors,

(Jai )aidi (Oan+1 )an+104n'+1 naianH = (Uai)aidi (Uan+1 )Ozai ant1ll

= _25aian+15ézidn+1 . (349)

AqAn+1

Plugging this into the expression for V/en+1£/1 gahove,

/ / _
Vv an+1dn+1§a1"'and1"'dn - (]‘ + U)van+1dn+1galn-andlman + van+1dn+15§a1~~~and1~~~dn

n
- Z(vﬂﬁ.(a>€aian+18didn+1€ B B
=1

@O Gl Gin

- vaidz‘ (U)f i : (350)

a1 Gy Qn 100 G Qg1 )

!/

Corollary gives v/(an+1(an+1§a1~-~an)a1~-~an) = 0. Since " is itself conformal Killing,
. v+ = 0 already. Any terms with a Levi-Civita symbol go to zero upon
(on 41 (8 1>a1-+0m )b -+Gin)
symmetrisation. Finally, that leaves

0 = V(an+1(dn+155041'“&”)0'41'“6'!”) + Z v(az(az (O-)fal"'di"'an+l)d1"'&i"'dn+1)
=1

= Viamir(6ni198a1an)iném) T nv(anﬂ(anﬂ(U)fal-..an)al-..an)

(Oén+1(dn+1gal"'oén)o'él"'o'én) ) (3:51)
where C, noardn = 08t andrd, T 080, andra, - Lhis last step is possible since
(an+1(dn+1€a1"‘0¢n)d1'“dn) =0
— v(an+1(dn+1 (U)éal---an)dl---dn) = v(an+1(dn+1 (O-é-al-"an)dl"'dn)) ’ (352)

5This is essentially an application of the the Lie group - Lie algebra correspondence.
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Since ¢,

shares all the symmetries of £
= 0 is to have ¢

Qp-QpdGy

01 e oGy 3 the only way to get
= 0, or equivalently

Q1 Qn iy -G

(an+1(é@n+1 Car--an)dr“d )

6£a1~~~and1--~o’zn = _nagal...andl...@n s (353)

which completes the proof. O

[ have already found the most general form of the top component (conformal Killing) in theorem
. Actually finding all (or indeed any) conformal Killing tensors, £ for a given manifold
is beyond the scope of this thesis. However, given %% finding the lower order components
can be achieved via a matter of informed guesswork.

Lemma 3.6. Given the top component, £ of D™ the lower order components are unique
up to the addition of lower order symmetries.

Proof. Let
}:g? Vg, Vo, and DY ="V, 1V, (3.54)

both be symmetries of A such that £ = &7, Since D ) and D ) are both symmetries,
whenever Ay = 0, ADYZ ¢ =0 and AD2 = 0. Thus,

0=AD"p — ADS"¢

=AD" = D)
-1

Z a1 ‘ak .. 5‘11 Ak e vak%p (355)

k=

Therefore, D§") — Dé") is a symmetry of order n — 1. Hence, D ) and D ) differ by only a
lower order symmetry, hence proving the lemma. U

This lemma is perhaps not very insightful, but it is useful nonetheless because there is actually
a guide to guessing the lower order components in terms of the top component. Namely,
in the action - equation - ¢ must transform as ¢ — e’ under a Weyl transformation,
e,# — €%, As I will concretely demonstrate in the next two subchapters, this is sufficient
to find the possible forms of the lower order components.

3.4 1st order symmetries
From theorem
=V, + ¢ (3.56)

with £* a conformal Killing vector. Next, to apply lemma I have to first find all Oth order
symmetries, i.e. scalar fields, &, such that Ay = 0 given Agp.

Lemma 3.7. The only Oth order symmetries of A are constants.

Proof. Agp = (O—R/6)(§p) = E0p+2Va(§)V(9) +00(§) — REp/6 = 2V, (§) V() +¢0(E).
Then, since ¢ and V() are linearly independent, V,(§) = 0 and hence [J(§) = 0.
Finally, as £ is a scalar, 0 = V,§ =¢,"0,,{ = & is a constant. O
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Hence, the £ in equation [3.56| is unique up to a constant. I will find its possible form via the
requirement that DMy — e? DMy upon a Weyl transformation.

Lemma 3.8. The only physically admissibl(ﬂ 1st order symmetry operator (up to the addition
of a constant) is

DW = ¢y, + iva(ga) , (3.57)

under the requirement that D'V’ = e DMy upon a Weyl transformation.

Proof. As before, one can equivalently work with the infinitesimal case, ¢/, = (1 + o)e,™.
Then, also recalling lemma, |3.5],

D'y = (V' + &) (¢)
= (1= 0)e"(1 4 0)Va = V(0) M) + £+ 68)(1 4+ 0)p
=§"Vap —0§"Vap +E0Vap — 0+ Ep + 080 + £ Va(op) + Eop
= (1+0)DWep + (6§ +£°Va(0))e (3.58)

Therefore, to get the required transformation property, £ should be constructed from £* such
that 6§ = —&*V,(0). Physically, ™ functions as an infinitesimal generator of conformal
symmetries of ¢,,, = my ansatz for ¢ should be constructed from £* without products of £“.
This is what I mean by physically admissible. Hence, I need an object constructed from the
metric/vierbein alone with one local Lorentz index only, to contract with the index of £%. The
only possible ansatz is thus £ = AV, (&) for some constant, A. Under a Weyl transformation,

AV (€)= A((1 + o)V, — VP (o) M) ((1 — 0)€%)

= AV % + AoV £ — AV (0) My (€7) — AV, (0€%). (3.59)
Hence,
S(AV ) = AoV &% — AV (0) My (€%) — AV 4 (0€7)
= AoV &% — AV (0)(0%,& — 6%E,) — AoV " — AV, (0)E°
= —4A"V,4(0), (3.60)
which gives the desired result, 0§ = =V, (0) = A =1/4. O

Thus, it must now be checked whether
1
DY =¢*v, + 1 Val€) + & (3.61)

where % is an arbitrary conformal Killing vector of the manifold and £ is a constant, really is
a symmetry of A.

Theorem 3.9. DY = £V, + 1V, (£%) + € is always a symmetry of A.

Proof. In vector notation, £* being conformal Killing is equivalent to V& + Vi, = %nabvcgc
by setting the symmetric and traceless part to zero. The constant, &, is already a symmetry, so

6The meaning of physically admissible is given in the proof.
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only DU = ¢2v, + }lvaga remains. Let Ap =0 <= O(p) = %Rgo. Then, also remembering
that V.,V = V, V.0,

ADVg = (O ZR)EVa+ 1 Val€))eo

4
= EOVa(g) + 29" (E)V3Va(e) + O(E)Valo) + JOVa(E)e

= D€V ap) + 0(Val€)9) — ZREVa(9) — 5o RVA(E)

+ 3VIVL(EIVale) + {Val€)0(9) — SREVa(p) — 5 RVAE)s

4 24
= E'DV(9) + 29" (E)V3Valg) + DE)Valo) + {OVa(E)e
+SVVLEITile) — SREVal). (3.62)

OV = VbeVago
= V'V, Vi
= V.0 + [V, Va] VP

1
- EVG<R§0) + Rbcbavcgp

1 1
= 6Rvago + 6<,ovaR + Ry Vo (3.63)

Next, using the conformal Killing condition,

VY (EVoVa(9) = —VH(E)VyVa(9) + Sn™Vo(€)VaVa(e)

2
= V(E)ViValp) + 15 ValE) R (364
Therefore,
VHENViTa(p) = 5y ValE) R (365

Then, putting all these pieces together,

ADDp = (D) + S VVa(€") + RUG} V(o) + 15 {26°Va(R) + Vale)R + 30V

(3.66)
Let {1} and {0} denote the coefficients of V,(¢) and ¢ respectively. In {1},
VOVLE = VyVee + [V, V€
=T V(i) + R
— e + %vavbgb — R%¢,. (3.67)
Hence,
%vavbgb = —0¢* — R* < {1} =0. (3.68)
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Next, to simplify {0}, the previous equation yields

OV, = V,VoV,e°
= —2V, 6% — 2V, (R™¢&,)
= —200V,£" — 2[V,, d]E* — 2V, (R™&,), (3.69)

and thereby,

300V = —2[V,, 0J¢" — 2V, (R™E,) . (3.70)

[V, )6 = V[V, ViJE" + [V, Vi V€
= vb(Racabgc) + Rbcabvcga + Racabvbgc
= V.(R™&) (3.71)

Substituting that back,

300V,E% = —4V,(R™E,)
= —4V,(R™)& — 4RV, (&)

= —2£"V4(R) = 2R™(V(&) + V(&)

= —26"V4(R) — R0V o£°

= —2{"V,(R) — RV ,£°, (3.72)
which rearranges to {0} = 0.
Therefore, ADWyp =0 < DW is a symmetry of A. U

Corollary 3.9.1. D) = ¢V, + 1V, (€%) + £ is the only 1st order symmetry of A,

Proof. Theorem [3.4] lemma [3.6] and lemma [3.7] together immediately lead to the corollary. [

3.5 2nd order symmetries
This time, from theorem [3.4]

D@ = ¢, V, 4+ £V, + ¢ (3.73)
for a conformal Killing tensor, £%.

Lemma 3.10. To get D'®y' = ¢"D®y under a Weyl transformation, the only physically
admissible 2nd order symmetry (up to the addition of 1st order symmetries) is

2 1 3
D® = ¢y, vV, + gvb(é‘”’)va + Evavb(fab) - 1—ORab§ab- (3.74)

Proof. Again, I will form an ansatz for €% and ¢ by enforcing D'®¢’ = (1 + 0)D® ¢ upon an
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infinitesimal Weyl transformation, €/, = (1 4+ o)e,”. Hence, by lemma

D'y = £V, V, + £V, + &)y
=((1- 20)§ab((1 +0)V,— V(o) M) (1 +0)V, — Vd(J)Mbd)
+ (" + 06 (1 + 0)Va — V(0) Map) + €+ 66) (1 + o)
= £V Vi — 206V Vo + £V Vi — £V (0) Mae(Vip) + £V (0 Vi)
— £V (VU 0) Myap) + +EPVoVi(09) + £V + 6V o + E°0V 00
— EVo(VP(0) Mayp) + "V alop) + £ + 660 + Lo
= (1+ 0)DPp — £V(0) (1 Vep — e Vap) + E4Vo(0) Vi (e)
+ 26"V 4(0) V() + Vo Vi(0)p + 6 Vap + 0 Vap + £ Va(0) 0 + 680
= (14 0)DPp + (46V (o) + 0€* + 66 V()
+ (€Y, Vy, + £V, (o) + 66) . (3.75)

Therefore,
6" = —4E®V,(0) — 0€® and §¢ = —EPV,V, — €7V, (0) (3.76)

to get the required transformation property. As with the 1st order symmetries, £* and £ should
be constructed from £% without products of £%°. Hence, I need objects constructed from the
metric/vierbein alone with one and two local Lorentz indices respectively to contract with the
two indices of £%° to give £% and €.

Hence, the most general ansatz is £ = AV,(£%) and & = BV, (£?) + CR,EY.

f/a — Avgglab
= A(Vy + 0V — V(0) M) (€% — 20£°7)
= (1 — 0)AV,E™ — 2AL°V (o) — AVE(0) My () (3.77)

Thus,

06" = —0€" = 2AE™V(0) — AV (0)(69E," — 0°.8," + 6%€% — 6°.€%,)
= —0&" — 2AEV,(0) — AVy(0)E™ + 0 — 4AV,(0)E% + AV, ()€
= —0&" — 6AEPV,(0), (3.78)
which implies A = 2/3 to get the required 66 = —4£PV, (o) — o&°.
Next, ¢ = BV, + CR!,£".
VIE" = (Vi + 0V, — V(o) M) (£ — 067 — 4670V, (o))
= Vo = £°Vo(0) — 4V Vi (0) — AV, () V(o) — V(0) (6%, — 6°.La)
= Vol — 10"V, (0) — 46V, V(o) (3.79)
R,E = (Rap + 20 Rap + 0oy (o) + 2V, Vi (0)) (€% — 20€)
= Ry + €% O(0) + 26°°V, V(o)
= Ryp€™ + 267V, V(o) (3.80)

With these expressions,

£ = BV " — 10BE°V 4 (0) — 4BEPV Vi (0) + CRpEY + 206V V(o) (3.81)
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and hence
66 = —10BE*V,4(0) 4 (2C — 4B)EV V(o) . (3.82)

Therefore, B = 1/10 and C = —3/10 to get the required 6§ = —£%V,V,—£2V, (). Combined
with the expression for £ in terms of £%°, one finally gets

2 1 3
D® = ¢y, v, + gvb(gab)va + Evavb(gab) — ERabg“b (3.83)
where £% is an arbitrary conformal Killing tensor of the manifold, as the only possible physically
admissible symmetry of A (modulo 1st order symmetries). O

Theorem 3.11. D@ may not be a symmetry of A on an arbitrary manifold. Instead, given
Ap =0,

4
AD®p = (

4
' “ea VE(EM) + —Vd(oabcd)fbc> Va(®)

5
2 2 4
+ (ECabch“VC(ébd) + 3V6Vd(0dabc)§“b + Evd(cdabc)vc(fab)) p. (3.84)

Proof. The proof is long and largely follows the same techniques as the 1st order case, so I've
presented the calculation in appendix |B| rather than present it here. Il

Corollary 3.11.1. D@ is a symmetry of A on a conformally flat manifold.

Proof. A manifold is conformally flat if and only the Weyl tensor is zero. U

3.6 Remarks on nth order symmetries

Based on the discussion following theorem I knew 1st order symmetries of A would exist
on any manifold possessing a conformal Killing vector and indeed that was the result I found
in theorem [3.9 A truly “higher” symmetry would be one which could not written as a product
of 1st order symmetries. Since not every 2nd rank conformal Killing tensor can be written as
a product of two conformal Killing vectors, I have shown via theorem that truly “higher”
symmetries of A do exist on conformally flat spaces. However, I have not shown that is the
most general case; it is sufficient, but perhaps not necessary. See [20] for further discussion on
necessary conditions. Given that higher symmetries of A do not exist even at 2nd order on
all manifolds possessing a conformal Killing tensor, I find it unlikely that higher symmetries
would exist on arbitrary manifolds for n > 2.

For any n, theorem shows that £* is conformal Killing. From there, the next task
is to determine the lower order components. Key to my construction of those components was
enforcing that D'™ ' = ¢ D™y under a Weyl transformation; I was able to show D) and
D® were uniquely determined this way. A starting point on that path was lemma, , but form
there my approach was somewhat ad hoc. Going to nth order - where I have not shown exis-
tence or uniqueness of D™ - will require a more systematic approach. Luckily, options exist.
Using a variation of a formalism I will discuss in section [5| Eastwood| [I7] has generalised the
construction of the lower components in terms of Weyl transformation properties to all n and

"Eastwood’s approach is usually dubbed “tractor calculus.”
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claims “it is easily verified that [his|] formulae” are correct and uniquely determined. Unfortu-
nately, it may be easy for him, but it is not for me and I do not understand his construction.
Using methods quite different to mine, Eastwood has shown his D™ are higher symmetries of
A Vn in flat space, but concludes “it is difficult to say whether they are symmetry operators”
in curved space - a question I have fully answered for n = 1 and partially answered for n = 2.

Another challenging extension - motivated by applications in higher spin field theory - to
the calculation I have considered is the computation of higher symmetries of supersymmetric
extensions of the d’Alembertian. There has been some success in this endeavour [21], but it is
well beyond the scope of my thesis.
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Chapter 4

Higher symmetries of the massless
Dirac operator

4.1 Action for the massless Dirac operator
The general Dirac equation is
(i7'V, — qy"As —m)¥ =0 (4.1)

where m is the particle’s mass and q is its chargd'} In this thesis I will only be considering the
case of a massless particle in the absence of an external electromagnetic field.

Therefore, the Dirac equation reduces to i7*V,¥ =0 <— ~*V,¥ = (.

As with the conformal d’Alembertian, the task in finding higher symmetries is to determine
scalar, linear, differential operators, D™ such that v*V,D™®¥ = 0 for any four-component
spinor, W, satisfying v*V,¥ = 0.

Analogous to the last chapter, before hunting for higher symmetries, I will first derive v*V,W¥ =
0 as the equation of motion for a matter field and find the properties of the matter field required

to make the corresponding action Weyl invariant. Consider the action for a free, massless spinor
field used in curved space quantum field theory,

Sle,™, ¥| = —% / UV, (P)ed*z where e = det(e,,*). (4.2)
Under a variation to W,
S = —% /(m)’yava(@ +6W)ed's
_5- % / (FB*V o (W) + TV, (59))e d'z (4.3)
Hence,

i

0S = 5 /((ﬁlvava(\P) + W'V, (6®))ed s . (4.4)

1Strictly speaking, the zero on the RHS of the Dirac equation is a four-component spinor as well and thus
should be denoted 0. However, I will ignore such pedantry and just call it 0.
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To proceed, it is easiest to expand the matrix algebra contained within the action.

00" Va(®) = [ox* 0] {( i <0“>aa} lvma]

6a)aa 0 va>—<c’v
- Vaéc_d
— [5X04 (51,001} |:vad,l7>za:|
= 5Xavao'c>_<d + 527}dvadwa (45)

Uy Va(0) = [x* 4] h &ao)w (U(;)“d} {g;‘g_fz:}
7 Vozd(s_d
~ v B [gaigy
= Xavad(;)_(d + Q_ﬁdvadédja
= Vaa(X*0X") + V**(Yadba) = Vaa(X")OX* = V**(¥a)0va  (4.6)

Thus, the variation is

08 = _% /(Vad(Xaéid) + vad(&dgwa) - Vao}(Xa)(S)_(d - vad(id)dwa
+ 0 VaaX® + &Zdvad%)e d*z . (4.7)

The 1st two terms in the last equation integrate to zero by the generalised Stokes theorem
since the variations vanish at the boundary. Therefore,

05 = —% / (OX*VaaX® + 00a Vs = Vag (X*)0X" = V**(Ya)0ba)ed'z.  (4.8)

Since z and z* form a “basis” for C and 14 = (o )* & x* = (¥*)* by definition,

85 =0 <= Voux® =0, V%, =0, Voax® = 0 and V¥, = 0. The latter two equations
are complex conjugates of the former two, so really 6S =0 <= VasX* = 0 and V¥, = 0.
These two conditions can be summarised as v*V,¥ = 0 since

a _ 0 (Ua)ad vawa _ Vadxd
Y va\Il - |:<5.a)do¢ 0 :| |:va)—<d - Vad¢a : (49)

Hence, the equation of motion for ¥ from S is the massless Dirac equationﬂ.

Next, I have to find the Weyl transformation properties of S. Consider a Weyl transformation,

e,)" = (14 o)e,™ for infinitesimal 0. Then, since e = 1/det(e,™),

, 1 1 e e
‘= det((1+o)e,m)  det(e,m)det(I +cl) 1+tr(cl) 1440

=(1—4o)e. (4.10)

The Weyl transformed action is then

i

2
=S5+ 21/0@7‘1%(\11)@ d*z — %/prava(\p)e d*z — %/\leaava(ql)e d*z

S = / (1= 40) (T T8 ((1 + 0)Vy — V() Map) (¥ + 6% )e da

+%/\T’7“Vb(0)Mab(\P)ed4x—%/\Tf'yava(cS\Il)ed‘l:B. (4.11)

20f course, this result is already used in quantum field theory.
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Therefore,
3i U7~ 4 1 Sdr~Q 4 1 Ur~a7b 4
08 =5 [ 00" Vo(R)edlz — o [ 08" Vo()ed'z + 5 [ $9°V'(0) Map(R)e d'z
- / TV, (5)e d' (4.12)
In the 3rd term on the RHS,

7 M) = _(&a>- <“a)ad] {Mab%}

Substituting this back into the last expression for §.5,
31 s~ 0 4 1 NG T 4 31 s~ 0 4
4S = 5 oWV, (Pled s — 5 W'V, (Ped s + Y V.(o)¥y*Wed s
— %/\Tl’yava(éql)e d*z
i

=3 / [(&Tf —300))"V, () + ¥y* (va(dxv) — ;\wa(a)ﬂ ed's. (4.14)

Let ® =00 — 200 «— 0¥ =300 + &.
Therefore, V,(0®) = 26V, ¥ + 2V, (0)¥ + V,(P) and

. 3 _ _ B
4SS = —%/ [(50‘11 +® — 3U‘I!>’yava(\11)
_ /3 3 3 \
+ Wy éava‘ll + §Va(0)\11 + Vu(P) — §\Ilva(a) ed’x
— _% / (®Y'V, ¥ + UV, P)ed s, (4.15)
Denote the components of ® by ® = (¢,, *)T. Then,

\Tlfyava@ - Xavaa@d + '(Zdvadgba
= vad(Xa@d) + Vad(@dﬁzsa) - vad(Xa)S_Od - vad@?]d)gba . (4.16)

The 1st two terms on the RHS integrate to zero in the expression for §S by the generalised
Stokes’ theorem, provided spacetime does not have a boundary or the fields decay sufficiently
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rapidly at infinity. In either case,
05 = —3 /(@avaa(id) +0aV(Ya) = Vaa(X")B* = V*(¥a)pa)e d's

=3 /((Vad(xa)?@d)* + (VYa)0a)* = Vaa(X)P* = VO (Ya)pa)ed s (4.17)
Again, since z and z* form a “basis” for C and V.4 (x®) & V*¥(1)4) are arbitrary,

05=0 <= ¢o=0&p*"=0 <= ®=0 < ¥ =300.

Therefore, for S to describe a conformal field theory, the matter field, ¥, must transform as
U’ = 3/2W upon a Weyl transformation, €/,™ = e“e,™.

4.2 Structure of the symmetry operators

Given W is a spinor field, it will be more convenient to simply stick to spinor notation for the
remainder of this chapter. Because W is not a scalar, but a four-component object, the most
general linear differential operator is actually a matrix of differential operators, e.g.

B
D = [D(”iﬁ D(”C.“B] [%’g} . (4.18)
Dy ™ D) IX
Then, although D is a scalar in the sense of definition [2.11} none of D(l)aﬁ, D(2)aﬁ-, D(3)d5 or

D ( 4)d 5 is a scalar in the same sense. Variants of this “matrix of differential operators” approach
are undertaken in [I8, 22 [19, 20] and require “conformal Killing-Yano tensors” - an extension
to the concept I have already introduced. However, I will focus on the restricted case where

the higher symmetry acts the same way on all of ¥’s components, i.e.

Dy
Dy}
Dx?

DU = (4.19)

Like in section [3.2], the next task is to find the most general form of D from products and
contractions of Vg, Mag, Mas and £4%41%k while taking into account the equivalence
relation, [2.13, By the same logic as applied in equation [3.12] any Lorentz generator can be
“pushed to the front,” e.g. any Mp, V.4 like terms can be replaced with terms like Vo4 Mg,

Lemma 4.1. Any terms in the symmetry operator with more than two Lorentz generators can
be removed by the equivalence relation, ~.

Proof. First notice that whenever there are both dotted and undotted Lorentz generators, they
annihilate ¥ since M,5x% = 0, Magwa = 0 and [Mag,MdB] = 0. Therefore, only terms of
the form MysM,, or M o’zB]\_/[ qw need to be considere With D being a “scalar” of the form
in equation [£.19] the Lorentz generators must appear with appropriate coefficients, i.e. as
E2P Mog My, with £2Pm = ¢@B)w) and ¢89M7M s My, with €390 = @) respectively.
Consider the decomposition of these coefficients. Applying equation [3.25| repeatedly, if

31f two Lorentz generators can be reduced to one or fewer, then by induction a term with n Lorentz generators
can also be reduced to terms with one Lorentz generator or fewer.

35



Aag = A(aﬂ), then
1
AﬁWCMDV = A(/@YC’M)DV + g(guﬁAme + z—:,wApﬁC”)DV
1
= A, CuDyy + Z(gl/ﬁA(pWCu)Dp + e ACuy D’ + €A, Cp) D)

1 1
+ g(guﬁA(mDV)Cp + €uy A D) C*) + §(Eu65Vpr\vch)\ + 5u55wApACpD/\
+ €uyEupArgCP D + €,,8,5ApnCP D)

1
= A, CuDyy + Z(EVBA(MCM)DP + €y ApCy D’ + €0 A Cp) D)

1 1
+ g(guBA(vaV)Cp + e As D C7) + §(€uBAp'YCVDp + Eupein ApnCP DA
+ E,wApgcpr + 6M7€V5Ap)\ch>\) . (420)

Therefore,
— 1 P P oy L p P
Sy = (Bur) T 1(8”55@711) + 5”75(5/)#) T 8”“g(ﬁw) )+ g(gﬂﬁg(m v T 5’”£(ﬂﬂ V))

1 A A
+ 5(8#55;)71/,0 + guﬂnggp,\p + 5u7£pﬁup + Emgl/ﬁfpxp ) (4.21)

Since £apgu = Eapupus the previous expression can be simplified to

7 1 "
Eyur = &(pyu) + ﬂ(guﬁf(pw)p + 5M§(pﬁy)p + 51/,6’5(,3«,#);) + 51/75(,,,3@'0) + 5(%/3814 + 51/,6’5m)fp>\p

1
+ 1_8(8“/350va + SVﬁgpwp + Elwgpﬁvp + gVVgpﬁup) ) (4‘22)

Meanwhile,

MYy, — %Mﬂw—éﬂaw ¥ )

:_lgu Mﬁ'wl/_ly/ M'@'%“
2 “ 2 “

= i(é“as”ﬁ@bw 4 61 PP 4 §Y Py + 67 eM TP (4.23)
Putting the different pieces together,
71 May My tha
=¢ B MPY M,

1 7 1 A\
=1 (f(ﬁww) + 2_4(5uﬁf(p7y)p + € ppn)” T B (o) + €S’ T 5(%,351/7 + €upEy)Epn”
1
* E(gﬂﬁgpwp + v + Eundpp” + €V7£ﬂﬁﬂp))
X (5“a5”5¢7 + 5“(}5”7@05 + 6”a5“61/ﬂ + 5”a5“7¢ﬂ) : (4.24)
This last expression actually simplifies a lot because
§(Byuw) (61 Py 4 61 VP 4 §Y ePapY 4 §Y et TpP) = 0
guﬁg(pw)p((guagﬁdﬂ + 5ua5w/¢ﬁ + 5Va5uﬂ¢v + 5Va5u7¢6)
_ p _ Py _ p
- 5(moz) YT+ 0 2€(moc) Gl 5(moc) v
= —4¢, ﬁa)wﬂ, (4.25)
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Likewise, 5M7§(pﬁy)p, 5V/3§(pw)p and 5"75(/)6@/) multiplied with (6# P47 + 01 e V4pP 467, eHPah7 +
§v,e" 1P all equal —45(7 M)WJ'B as well because the former three are the same as su/@f(pw)p but
with a pu and v swapped or § and + swapped while the last factor is symmetric under p & v
and 0 & v swaps.

augawgp/\pA((S“aa”Bz/ﬂ + 01 eV 4 67 etBpT 57 e P)

= £ (V= 200 — 200 — )

= —6£", 1q (4.26)

Therefore 51,55W§M”)‘(5“a5”51/ﬂ + o1 eVIpP 4 5V etByY + ¥ etrapP) = —655757@0& too.

gwgpwp((guagl/ﬂw + (5#0{5”71/}6 + 5”a6"6¢7 + 5va6uv¢ﬁ)

= =&, VT — My b — 26, PUT — £, U

= —4€,5,"0" — €75, ¥ (4.27)
Similarly, €,5¢,.,,", €ur&,p,” and €,,§,5,” contracted with (61 "By + 61 eV TP + ¥ ety +

§v e")pP) also give the same result as the last line for the reason outlined above. Anyhow,
putting all the parts together,

7 1 2 1
Byuv - _ B _ —¢B _z B _ ~ B
M My Myutha = = <80 87 = 5675700 = €300 07 = 75675,V
7 2 7
_ B B B
=~ 0o ¥~ g6 ¥~ 1€ B Ve (4.28)

r}rlﬁwever’ 130 V7 = €0 U+ €V = €0y U+ 5820, = €y W7 + 57, e
us,

, 7 2 1
E Moy Mo = = 56050 " = 56305 ¥ = 56 3%
= Cagt” + (W (4.29)

for some some symmetric tensor, (4, and a scalar, (. The (1, term has no Lorentz generators;
it is simply a Oth order differential operator (i.e. a scalar) acting on 1,. The (,s1° term can
be absorbed into a term’] with one Lorentz generator since

£ My, = 5€% (Casthy + catls) = €505 = —ast®. (4.30)

Hence, £%7" Mg, M, is related by ~ to an operator with one or fewer Lorentz generators in
each term. Likewise,

gﬁwi’]\?mﬂppxd = CdBX,B + CXd (4.31)

for some ¢ 8 and ¢ as the algebra is the same, just with dots and the free index in an upstairs
position. O

Lemma 4.2. Any terms in the symmetry operator with a contraction between a covariant
derivative and a Lorentz generator can be removed by ~.

4 Absorbing into lower order terms implies the two differential operators are related by ~.
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Proof. To prove this lemma it will be necessary to use the Dirac equation, equation .9, which
says YV, ¥ = 0 <= Vaex® = 0 and V%), = 0. This is fine since applying the Dirac
equation to simplify a symmetry operator keeps one in the same equivalence class.

Given the previous lemma, there are two possible contractions, £°4V7 M, 3y and £V M By

fﬁavvaMﬁwwa = §£ﬂav7a(5aﬂw'y + Eay¥Ps)

1. . 1 5.
= éfaavvai/’v + §fﬁavadwﬁ
1 ..
=04+ §§ﬁavad¢6 (4.32)
However, V.s¥s = V(aa®s) + Viaa¥pg]

1
= Viaa¥s) + §5aﬁv7a¢v

— Vet + 0 (4.33)
= Vaa¥s = Vgata (4.34)
Therefore,
. 1 .
0V Mpya = 56V gyt (4.35)

and thus a V7 Mg, term is equivalent to a single derivative, V - Similarly,

£V M g x® = €7V, (0% x5 + 6% x3)

2
1 .. 1 e
= §§aava7Xﬁ + EgaﬂvaaXﬁ'
1 « G f
=0-5¢%V, X’ (4.36)

Again, Vadxfg = Va(dxm + Va[dxm = Va(dxm + %6‘5‘3waﬁ = Va(dxm. Hence,
é“affv YM .. v = _15& \V4 By lfﬂﬂv A (4 37)
a Ma X =756 Ve X0 T 5 X :

and thus VM 4 1s also equivalent to V5. 4

Corollary 4.2.1. The coefficient of any term with both a derivative and a Lorentz generator
can be fully symmetrised in the indices common to the derivative and Lorentz generator.

Proof. A term with both a derivative and a Lorentz generator can be represented as
£V oo Mgy o1 E24IV 0o M 4. respectivel gobre — galfn)a gnd ¢ooy = ¢ad(B9) glready since
Mg, = M3 and ]\_/[Bﬁ = ]\_/[“’YB' Then, by equation

afya a & 1 «a & 1 foY oY
3 By vadMﬁ'y — 5( 57) VadMﬁfy + gg Bfuw vadMﬁ'y + ge 75Mﬂu VadMﬁ'y

. 2
= ¢@BEy My — gguwavﬁd Mg, , (4.38)

>The overall operator/term may be of a higher order, but I am only interested here in the interaction of a
Lorentz generator with any one derivative and hence the coefficient can be restricted to only the one Lorentz
generator and one derivative case.
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where the 2nd term in the previous line is equivalent to a term with a single derivative by the
lemma. Likewise,

aaBio  WF (@B 7 L spa i 7 L siea pig 77
§ IB’YVCMOQMBA/ = ¢ 57)VaaMm+ ~e%¢ 7 VaaM g + 3¢ '€ ﬂﬁuvadM/@/y

3
= ga(aﬁv)vadMﬁ,;y 3504 ﬁuv 7M57 : (4.39)

where again the 2nd term can be simplified by the lemma. .
In either case, only the fully symmetrised form of the coefficient, § (@B and £4(@B9) respectively,
is left acting on Vo4 Mp, or Voo M By respectively. OJ

Lemma 4.3. For terms with only derivatives, the coefficient can be taken to be symmetric and
traceless.

Proof. Since v*V ,W¥ = 0,
0 ="V, ¥

1 1
= — (" + YV Vo + = (VP9 — ")V, V, ¥

2 2
1
= =" ViV + 597" [Va, Vi] @
1
= 0¥ + nyafbeadeMcd\Il : (4.40)
Therefore,
_1 [0 (0")ad 0 (Ub)aﬁ cd
[ | [ LR
_ 1 [(0%)aal8") ¥ Ry Mg 0 o
= 1 _ 0 (&a)aa(o.b)aBRabC Mcd
= 4 -Radaﬁ.chchﬁ .
1 e 1 auv D [ 2w
ZRadﬁ "Meaths = §(Rac’vﬁ " Myths + Rog”™" M ihs)
1 a
= §Ro¢dﬁ “,Bwﬂ
1 . .
= S0 = O B, = 00, (= 0,07 + e as) P,
= 3F¢,
1
= 1 1ta (4.42)
1 ad ¢ — 1 fe%s! v —B Dad Ny —f
TR M = (R M X + RSN X’
1_ao'z —
— 5 Bﬂuxu
= (5% C° Bﬁ*‘ R N G 5° S F)X
= 3FY°
1 .
= ZRXC“, (4.43)
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which finally gives
Ow — %LR@. (4.44)

Hence, every component of W satisfies an equation identical to the conformal d’Alembertian
except for a change of % — }L. This change occurs because (C1— %R)gp = 0 transforms covariantly
under Weyl transformations given ¢’ = e¢; W instead transforms as ¥’ = e3*/2W and for that
(00— %R)\Il = ( is the covariant equation. In any case, the present lemma then follows directly
from lemma because the % — }1 change is inconsequential in the proof of lemma . Il

Hence, given lemma [3.3| and the results & comments in this section, it follows that the most
general nth order symmetry operator I will need to consider is

n n—1

D(N) - Z galmakdlmdkv(nm T vakdk + Z falmakﬂvdlmdkvmm e vakdkMﬁ”/
k=0 k=0
n—1 .
+ Z far"akmmak,@”yvaldl . Vakdk MB’Y (445)
k=0

where £a1-~~akd1~-~dk _ g(ar--ak)(dr"dk)? 5(11“'%57@1-"0'41@ — 5(01-"%57)(@1‘“%)
and éal~~~akd1~~dkﬁ"y — é’(al“'ak)(dl"‘dk/g"y)

For example, in the n = 1,2 cases, the symmetry operators are
DW = €94V 1 + € Mg + €PN 5 + € (4.46)
where 48 = ¢(@) & ¢o8 = ¢(@8) and

D® = g9 4V s + €970V 16 Mgy, + €99V My + €%V a6 + €9 Mg + P M o5+ €
(4.47)

where £2868 = ¢(@B)(&B)  gabré — ((aBna cadBy — ¢aléhy) ¢ab = ¢(ab) gpqd ¢a8 = £(ah),

4.3 1st order symmetries

Lemma 4.4. In DY £2% must be conformal Killing, £ = %V(adﬁﬁ)d and §d5 = %VQ(QSQB).

Proof. First, let ¥ satisfy v*V,W¥ = 0. That is,

0= [ o] o] - o) o
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In components, Vo4 X* = 0 and V%), = 0. Then, applying the candidate symmetry operator,

7'V, DV @
_[ o (Ua)aa] v ((gﬂﬁ'v My, + €PN+ €) {%D
(5)% 0 a BB B By X
_ | Vaal(%V 55+ € My + €71 M 3 + X°)
ved (fﬁﬂvgﬁ + SBWMBV + fﬁﬂyﬂfj«y + f)wa)
ad (
(

44

(

(

((€%°V g5+ €7 M g, + O)X)

G ((E9PV g5 + €97 My + €)i)a)

0 €77V 55 X% + 5PV (6%, %5 + 6% X ) + €X%)
(
(
(

144

ad gﬁgvﬁﬁ¢a + %gﬁ’y(gaﬁwv + 5a7¢ﬁ) + &/}a)
0a 879V 35X + £99%5 + €X%)

o éﬁﬁvﬁ/j’wa + £aﬁw5 + gwa)
Vaa(€%)V X% +EVaa V35X + Vaa (€)% + € Vaa (%) + Vaa (OX*

i Vaa(éﬁﬂ)vﬁ[j’wa + gﬁﬁvaavﬁﬁ,wa 4 vaa(gaﬁ)wﬁ + gaﬁvaawﬁ + Vaa(é)wa )

44

(4.49)

where I have used Vs X¢ = 0, V), = 0, Mg, x* = 0 and Mﬂ-wa = 0. In the expression
above,
7V aaV X" = €V 3V aaX" + €7 [Vaa, Vglx°
_ 8B war ca P AT ca
= 04'—5 (RadﬂB M, X +Raa6/3’ M ;:X")
— glgﬁRaaﬁﬁa'}’)—cry
= 7 (capC )" + 4pEap™ +eas(8%67, +87,8%)F)X;
= P 50X — 3FEas X" (4.50)
EPPVN gatha = EP7N 55V e + €[V V 510
_ B,B ad pv Dot prpr
= 0—1.—5 (R 85 M, Yo+ R 85 M )
= gﬂﬁRaaﬂﬂaV¢7
= EP9(09,0°%, 7 + 0B 1%+ 0% (=0°,07 5 + €%2pa) F)by
= £ B, — BFE™ Y, (4.51)
Further simplifications can be made in equation [4.49| using equation [3.28|

V(N stba

a(c : 1 e} « : ]- d. 2 1 a O.t. .
= <v( ( (gﬁ)ﬁ)) + 56 6v7( grﬂ) + 55 ﬂv(a’ygﬁ)v + 16 Be vaéww) V55'¢a

o 1 o e &
— v(a(a(éﬁ)ﬁ))vﬁgwa + §v( &gﬂ)vvﬁ Ve (4.52)
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as saﬂvm% = VO‘B@/J& = (0. Similarly,

Vaa(€) Vg%
= vad(fﬁﬁ'>vﬁﬁ>_(d
1 " 1 g 1 7 | BBy
= | Viaa(€o)p) + 5208V (685 5846V 0 €97 T J8asCag V€ | VX
.1 -
= V(a(d(£5)5)>VBBX + §V7(@§7/3)VQBX . (4.53)

Plugging all this back into equation 4.49]
@ oo L i ; —a —a
V'V DWW = |:V(0¢(d<§3)/j’))vﬁﬂx + 5V 665 Va X+ 87 BuapX = 3F6aaX
+ Vaa (€)X + € Vaa(X3) + Vaa (X",
i 3 l(a vl aBaf ad
VOOEINY gtba + 5V DIV 5 0 + Egs B o — BFE g

T
+ VOUES Vs + €.V g + Vad(ﬁ)%}

1 -

= {(v(a(d (55)5)) + €ap (avw(d@yg‘) + gaﬁ') ) VWX“

+ (Vaa(€) + Vo (€4p) + €7 B opas — 3FEac) X",
o a1 o

(V(Q(Oé(gﬁ)ﬁ)) 4+ 9B (év( #55)7 _ ga[?))vﬁﬁwa

. . T
(V) = V5 (§77) + g 77 3F5W>wa} . (4.54)

The v*V,¥ = 0 property can no longer be used to simplify the expression because the coeffi-
cients of VX% and V 410, are symmetric in & & £ and a & f respectively. However, for D)

to be a symmetry, 7*V,DMW¥ must equal zero. Hence, given W is an arbitrary solution, the
only way to get 7*V,DM¥ =0 is to get

1
0= Viaals)s * Eap (gv”mfw') + faﬁ') )
0 = Vaa(8) + Vo (645) + €PE 505 — 3F6as,
. ; o1 .
_ a(a¢B)B aB (o o8 af
0=veEdh 4 o (§v L& — ¢ ) and
0= V&) = V2 (EY) + £ B — BFE (4.55)

Notice that in the 1st and 3rd of these equations, the term with the ¢ coefficient cannot cancel
out the other term because the other term is symmetric in the indices of the €. Therefore,

0= Viaulys = 0=V,
1 VR
0=V +ép = £ = §v7<a§7ﬂ> and
1 o y o a 1 o 3
0= §v< Y o e eoF = §v< L. (4.56)

The first equation implies £ is conformal Killing by corollary and the latter two equations
are two of the relations to be proven. O
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Corollary 4.4.1. Given £¢, DW s unique up to the addition of a constant.

Proof. In DO given £2%, €98 and £%8 are both determined by the lemma.
Hence, only £ remains to be found. Let £ = A and £ = B be two solutions.
By equation [£.54] to be a symmetry,

(Vaal&) + VP (as) + €7 B s — 3FE0s) X"

0= : ‘ : . (4.57)
(VOH(E) = V54 (E°7) + &5 B2 — BFE ),
Then, since ¥ is an arbitrary solution,
0= Vaal&) + Vo' (64p) + € E oy — 3F6as and
0= V&) = V54 (£7) + €43 B — 3F¢e. (4.58)

It will suffice to consider either one of these equations alone; I will choose the first. Then,

Vaa(A) = Vaa(B) = =V, (&:5) = € E, pap + 3F s
— Vad(A — B) =0
— 0ua(A— B) =0 as A and B are scalars. (4.59)

Therefore, A — B is a constant.
Hence, any two solutions for ¢ differ at most by a constant == given £**, DY is determined
up to a constant. U

The lemma means the only term left to constrain in D™ is €. As in the previous chapter, & can
be determined by ensuring DWW transforms the same way as ¥ under Weyl transformations.
By the exact same reasoning as in the paragraph following equation [3.58] the only physically
admissible ansatz for £ is AV 6% for a constant, A € R.

Lemma 4.5. In DY, if £ = AV 6%, then A = 3/8 to get D'DW’' = &32DWW under a
Weyl transformation.

Proof. Under a Weyl transformation,
Vi=(140)V,— V(o) My (4.60)

Translating to spinors,

Vie =1 +0)Vas + %(Ua)ad@b)/mvﬁﬁ(g)((Uab)WMW — (Gap)"" M)

= (1+0)Vaa — é(aa)aa@b)gﬁvﬁﬁ(")(5“7((0’a)w(5'b)w — (00)3(6a)") My
= &7 (G0 (00)3y = (50)" (0)4) M o)
=(1+4+0)Vas — %VBB(J)(s“V(smsws”'Bsw — 57d5”a53,y557)Muy
— (7, 5050, (559 — EanEane® 1P M 115)
= (14 0)Vaa + V24 (0)Mag + VP (0)M 45 (4.61)
Next, since £%¢ is conformal Killing, by lemma , gos = (1-0 )fad' Thus,
Vs = (1= )& (1 + 0)Vas + V4 (0) Moy + Y, (0) M 1)
= £09Y g + £V () Moy + €99V, (0) M . (4.62)
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V0% = (14 0)Vaa + V24(0) Mag + VP (0) M 45) (1 — 0)€°%)
= Vsl — €Vaa(0) + 5V (0} (085" + 0756,%)

1 : . .
V(o) (08 + 5 E)

= Vo™ — 4%V 44(0) (4.63)
Then, by lemma
glaﬁ S "B)c
1 y .
= S (1 + )V + V()M + VO (0) M) (1~ 0)¢™)
_gos _ %de(a) M | lvvd(g)(g(am £ 4 56 gy
V00767, + 5%,E7)
= =V (0)eM5. (4.64)

163 Lo (agrap
¢ B _ §V a( ¢ 5)
1 ‘ . s A
= S (1 + )V, + V@) Mo + Y, () M')(1 = 0)6™)
Ny 1
= a’B —_—
£ =5V
1 . 2 : .
+ 1 Va (@) (96 + 67 60)
= =V, ()¢ (4.65)

) 103 1 & a ; « 3
WLH0)ED + VI 0)(07857 + 0%E,”)

Finally, putting all of these pieces together,
D/(l)\Il/
= (€ Vs + €V (0) Moy + €9V, H(0) W 45+ (6 = V4 (0)67%) Mo

+(50'“5—W%a)&’“ﬁ”)ﬂdg+Avm<£w>—4A5wvad< ) <(1+ o) )
= <1+ ga)D(l)‘Il—i— §5advaa( YU+ £V (0) MW + €24V, P (o) M WY
— V() Map® — V4 (0)¢ D M 15 — 4AE T o4(0) W
_ (1 + ;0) PO 4 (g - 4A>ngw< )W + €9V, (0) Mas ¥ + €9V, (0) 1,50
= V2 (0)6" Mag® — V7 (0)€" M ;50
= (1 + ;U> DYW + (g - 4A> €9V 1 (0) W . (4.66)

Therefore, to get the required transformation, it must be that 3/2—44A =0 «<— A=3/8. O

Hence, the most general 1st order symmetry of the massless Dirac operator is,
. 1 3
D(l) — gaavad + §V gﬂ & o8 + V aéaﬁ Maﬁ + 8vaa(€aa) (467)
up to the addition of a constant.
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Theorem 4.6. DU is always a symmetry of the massless Dirac operator.

Proof. Contlnumg from the proof of lemma [£.4] and in particular equation [£.54] with
£oB = 55 faﬁ = 1V 50‘5 £ = Vaal* and £2¢ conformal Killing,

[ (Vaa(&) + Vo (645) + 7B, g — 3FLa) X
(V€)= V5H(€%7) + §gpB07% = BFE 1)y
[(3VaaV5(€77) — 3V,0V° 1 Lgp) + €7 EQM 3F &) X"
I

YV, DVW =

mm

VoY 5(659) — IV AV €6 4 g, BoPeR — 3Rged)y, (4.68)

Then, apply the conformal Killing equation and equation [3.28| along the way,
VaiV 556% = VOV 04 + [V, V 556"
_ o8 (V(a(afm@) + ; aﬂv(a )y + 15Q5V oS T iéagsaﬂv fw>
+ (R M+ R, " My )6
= %Vﬁav(aggﬁ)/ﬁ + %Voﬁvﬁ(dﬁﬁﬁ') - iv“dvﬁﬁfﬁg
55;49 _P

BB
wasin & (4.69)

acBBu

Rearranging,

BB _ 2B Be 4 25y BP .
VaaVgal™ = 2ViaVia Eap T 3Va Vialsp)
4 .

- g(gdﬁoaﬁyﬁ + eaﬁEuﬁdB + gdﬂ(_eaﬂ(sﬁﬁ - 56a€5M)F)€MB

4 : . .
— 5(8a50d5ﬂ5 + %BEOCB,'LB + aag(—adpé% — (5’8@55”)F)§5“
2 3 2 8 54
_ B Be 4 2y BB . Z¢BB . .
=3VaVa $pp T 3Va Viabss) — 38 Eapap t 85 Caa (4.70)
By raising the indices (to use in the bottom two components of equation ,

feYs" & 3 2 o & B 8 aBaf reYs
Vo 565 = —v v+ v V7 — S -8R (4.71)

The preceding two equations can be simplified as follows.
B Be 7B Be B Be .
\ dv(a 5B)B =ViV, fﬂﬁ - §5a,6’v oV’ 575
_ BB i B Ble . . ¢BB
=V'V7%:&ss + [V Vi 1€55 — §vadv[jﬁ§
; 1 Sy 1 :
= VIV oty + 520V T — 5 VeV
(Rﬁ BHVM + Rﬂ B#V HV)f,Bﬁ
=v,’ V? sy + ( R%,” e s+ R daﬁ ) (4.72)
Thus,
Vﬁdv(aﬁgﬁ)ﬁ’ - Vaﬁvﬁ(dgﬁﬁ) + <_5Bdcﬁaﬁu + 5/BocEﬁuaﬁ - 5ﬁa(_5ﬁ55ua + Eaﬁfuﬁ)F)fuB
+ (5504 éaﬁﬁu _ (gﬁd Eﬂaﬂﬂ + 55a (€dﬁ.€ﬂf3 _ 5Ma5ﬁB>F)§ﬁﬂ
_ v BB :
=V V' (alss) (4.73)
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Hence,

. 4 . 8 .
.eBB BB . BB .
Vaavggf - §Va \Y (dfﬁﬂ) - 55 Eaﬂdg + 8F£ad

3 s 1 _ . -
BB _ BB . BB .
The previous equation combined with equation [4.73] immediately leads to
3 s S B : .~ ‘
aq LeBB aw(a £p)8 . aBap ac
SV Vst = SV = g B 4 BFE (4.75)
Then, substituting equations [4.74] and into equation immediately results in
YV, DWW =0, i.e. DY is a symmetry of 74V,. O
4.4 2nd order symmetries

Theorem 4.7. The only candidate for a physically admissible, 2nd order higher symmetry of
the massless Dirac operator such that D'OW = &32DAW ynder a Weyl transformation is

aBéf 2 ot &f 2 & ~a BB W, 8 aBaf3
D® =¢ B Bvadvm + gv( Bgﬁw) BVQO-(MM + _vﬁ( ¢ ﬁ’ﬁ'y)ij{]w/éW + §vﬁ/3(§ B B)Vad

3
(29, yeonad 4 Lple  emas)
9 37 aB o

2 1
+( Vo6V 4~ B o (GgatP) )MQBJF

7 .
aﬁaﬁ . caBaf
9 3 vaavﬁﬁ(f ) 10 04,6’(54,85 .

(4.76)

15
However, D@ may not be a symmetry of vV, in general. Instead, given v*V,¥ = 0,
ay DOy = 1(5 Ve gy — C T .)VﬁB—d+ icwﬁ v Bf
7 Va ~ | 3\ap SeBR af  Syuif X 15 a ¥ (8 Sy

1~ 5 2 : 7 3 = 4
_ _Caﬁwvﬁ(ﬂfamfa) _ 1_5 £w7dV“7(C’a ﬂw) _ 1_5 gavﬂ'yvv%cdf%ﬂ)) X%

15
Licos cmas _ Gas copinyg 15 oy Beosin
g( wg - wg ) 5% 1 5 Wg 5 §

1 oo, g B)aB _ 2 (OB 7 A vaRltesiall !
o B By 5’5 15€ ( ) 15 vy Vo ( ) Yol -

(4.77)

Proof. This is easily the longest and most technical proof in my thesis. I have presented it in
full in appendix [C] O

Corollary 4.7.1. D® is a symmetry of v*V, on conformally flat spaces.
Proof. The Weyl tensor is zero on conformally flat spaces. O

Again, like with A, a truly “higher” symmetry - i.e. one which is not a composition of 1st order
symmetries - can be guaranteed on conformally flat spaces, but not on arbitrary manifolds.
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Chapter 5

Conformal geometry and the path
forward

I have successfully constructed the most general symmetry operator candidates for A and v*V,
at the 1st and 2nd order and found they are indeed higher symmetries on arbitrary manifolds
and conformally flat manifolds respectively. However, I think it is clear from reading appen-
dices B] and [C] that extending to 3rd order and higher will be impossible within the limits of
human endurance and perseverance.

Therefore, a more efficient and elegant approach will be required to reduce the computational
complexity of the task. As it happens, such an approach exists - although I met it too late in
the progress of my master’s to use it. The vierbein approach to differential geometry makes
manifest an invariance under both general coordinate transformations and local Lorentz trans-
formations. But, Ay = 0 and 7v*V,¥ = 0 are both conformally invariant equations of motion.
The additional Weyl symmetry is not naturally accounted for in V, =¢,"0,, + %wabCM be The
formalism of “conformal geometry” seeks to rectify this shortfall] Here I will briefly recount
its features as discussed in [23] and even more briefly sketch its application to the problems I
have considered?

First, consider the Poincare algebra, i0(3,1). With an appropriate choice of basis, it can
be defined as an abstract Lie algebra with

[Maln Mcd] = 277d[aMb]c - ZUC[CLMb]d7 [Pm Mbc] = 277(1[ch} and [Paa Pb] =0 (51)

as the fundamental Lie brackets. Physically, P, generate translations and M,, generate Lorentz
transformations. The form of the covariant derivative,

V.=0.+ %wabchc, (5.2)
is directly determined by the generators of i0(3,1) as follows. One cannot use partial deriva-
tives in differential geometry because given a (non-scalar) tensor, 7', 9,7 no longer transforms
covariantly under local Lorentz transformationg’] The resolution is of course well known - add
a compensating field. Different tensors transform differently under Lorentz transformations
though.

Hence, the compensating field must itself depend on the tensor V, acts on, i.e. the compen-
sating field must itself be an operator.

LOf course, if one is not dealing with a conformal field theory, then there is no shortfall. Conformal geometry
is only useful for conformally invariant theories.

2My notational conventions will be somewhat different to [23] though.

3Tt can be assumed 7 is a scalar with respect to general coordinate transformations because any curved
space indices can be converted to local Lorentz indices by vierbeins and inverse vierbeins.
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Since it is local Lorentz transformations that are the issue, the compensating field must be
proportional to the Lorentz generators, thereby resulting in the form, V, = 9, + %wabcM be A
compensating field proportional to P, need not be added because under a Poincare transfor-
mation, (A, a), a tensor transforms as

T'(x) = (RIAJT)((A, a) ') (5:3)

for some representation, R, of SO'(3,1). Note that R is only a representation of SO'(3,1),
not ISO'(3, 1). Indeed the effect of translation is already accounted for in 9, because under an
infinitesimal translation, x'* = x® — £%,

T'(z) = T(x + £)
= T(x) + £"0,T(z)
= 6T(z) = €°0,T(z). (5.4)

Thus, the partial derivative is already the generator of translations, hence justifying why only
a Lorentz generator compensating field is necessary. Finally, the exact form of wy,. is fixed by
enforcing that V, is torsion free and V,T transforms covariantly for any tensor, 7.

However, there is no reason why this logic in constructing V, cannot be applied to a larger
gauge group. Consider the conformal algebra, i0(4, 2), which can be defined as an abstract Lie
algebra with

[Maba Mcd] = 277d[aMb]c - an[aMb]da [Pa; Mbc} = 2na[ch}a [Km Mbc] = 277(1[ch}7
D, ) = P, [D, K,] = —K, and [Kq, Py = 20D + 2My, (5.5)

as the fundamental non-zero Lie brackets. By inspection, the Poincare algebra is a subalgebra
of the conformal algebra. The extra generators, D and K,, represent dilatations and special
conformal transformations respectively - the new symmetries present in a conformal field theory
which are lacking in a merely Lorentz invariant theory.

Therefore, in conformal field theory, it makes sense to use “conformal covariant derivativesﬂ”

L.

D, = e, "0, + 5wabCM”C — 0K, — b, (5.6)
for some connection coefficients, Wape, f,° and b,. All three are again determined by requiring
D, to be torsion free and requiring D,T to transform covariantly under local Lorentz, dilata-
tion and special conformal transformations.

While it is more convenient to work with D, instead of V, when dealing with conformally
invariant equations, it would be even more advantageous if one could transition between the
two derivatives, e.g. do the calculations with D,, but present the final result in terms of V,
to compare with other work. Since the Poincare group is a subgroup of the conformal group,
going from D, to V, amounts to picking a gauge - or “degauging” - within the conformal
group. At this point, I will hasten the discussion and present some results from [23] without
proof. From [23], it can be shown that

e When acting on a tensor, T', which transforms as 7" = €"T under a Weyl transformation,
e =e%,", DT =nT and K,T = 0.

a

e For any element, X € i0(4,2)/span({P,}), X’s commutation relation/Lie bracket with
D, is the same as its commutation relation/Lie bracket with P,.

4This is not necessarily standard terminology or notation, but it will work for my purposes.
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e Upon choosing the gauge b, = 0, Wape and f,° are uniquely determined and lead to
D,=V,— %PabK b where P, = %Rab — %nabR is the Schouten tensor.

e In the by = 0 gauge, [Dq, Dy) = 5CupeaM ™ + 3V (Copea) K°.

These properties are sufficient to translate from D, to V,. Rather than presenting abstract
justification of this assertion, in this case I think it will be better to present the following
lemma as an illustrative example.

Lemma 5.1. In the by = 0 gauge, D® from theoremm can be re-written as
aBaf 2 «a & 2 & B85 Vi 8 aBaf
D@ — 3 B ﬁDac’vD,@B + gD( Bgﬁv) ﬁDocécMﬁ'y + gDﬁ( ¢ ﬂﬁv)DadMBA_Y + §D,BB(€ B ﬁ)Daa
2 (a af 2 @ aBBY T 2 aBap
+ §D( 5 D567 Mo 4 5 Do D€ M g+ = Daa Dy (677°°). (5.7)

Proof. 1 will have to convert some of the results above to spinor notation along the way.

1
Dao’z - (Ua)ad(va - §Pabe>

1
= Vozd - §Pao'¢be

1 1
_ a by .
- (U )ad(a )gﬁ (iRab - gnabR + ﬁnabR)
1

= E, g5 — Capfasl (5.9)

Likewise, since D, has the same commutation relations as P, (except for [D,, Dy)),

(Ko, Dﬁ,@"] = (Ua)aa(ab)gg'(?%b@ + 2M )
= 2(0-(1)0@(0-(1)55]]) + Q(Ua)ad(db)ﬁﬁ'Mab

= —deape gD + 2(0%)aa(0”) 55 Moy and (5.10)
(0")aa(0") 55Mas = (0")aa(0") 55((Tab) s M™ = (Gab) s M)
= e (0)aa) 3 (72)s(30) — () (67 M
+ 7200(0aa(0")33((50)7 (00)5 — (30)7(00)oi) VTP
= —€upEuatyal’ 50" s MM + €1p8u52550°6 0" MM + €30 00 6 65,5 M
- eﬂpmﬂépgams,;a]\?"”
= 2,5Mas + 2e05M 4. (5.11)
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In summary,
(Ko, Dﬁﬁ] = _450‘58d5D + 480’46']\/[&/3 + 48045]\_/[d6 . (5.12)

It is now time to convert the expression claimed in the lemma to the V, formalism term by
term. Since £ = e720¢eB48 and W' = */2¥ upon €/, = e’e,™, by one one of the
properties above, K,4£%% = 0, K, ¥ = 0, DE¥4F = —2629%% and DW = 30,

Using these properties, in the b, = 0 gauge,

afaf .

aBof 1 ) 1
ZSBB(VM+Z mwKW—ZFKw)DmW

aBof 1 aBéf y 1 aBf
= £V 0D gs W + 7€ % By [KT7, Dgg] W — 7€ PP F[Kog, Dyl ¥

VB

iy 1
— gaBaB :

; 1 LY : T

. 1 545 M
+407, M)W — ZfaﬂaﬁF<—45aﬁ5aBD +degpMap + deapM ;)W

y 3 paga i6g  aq] i
= £V 0V 550 — §5a5°‘ﬁ Eopap® = €7 oy My ® — EPVE L Moy ®

(dgaﬁﬁ)wM v _ g

Y&

= gaﬁaﬁvadvﬁﬁm - égaﬁaBEaﬁdB\Il - Eaﬁ"Y aB gﬂ)fyaBMaﬁ\P and (513)
D(“Bﬁm)é‘ﬁDwng‘I’
:<v(a‘+1E(a . Klulﬂ_lpK(a)(gﬂv)dB)(v -+1E --K’”’—EFK >(M W)

8 4 wBi 4 8 ac 4 avar 4 (o761 By

. . 1 , 1
— V( 6557)0‘5 <vadMﬁﬂ{\Il + ZEowdl'/[Kyya Mﬁv]\I’ - ZF[KOZC'U MB’Y]\I,)

= v BgﬁﬂdﬁvaWIf (5.14)

since [Kq, Mye| = 21, and K. ¥ = 0 anyway.
Likewise, Dﬁ(afaﬁM)Dw]\_%Bﬁ\I’ = Vﬁ(afaﬁﬂﬂvwﬂm\l’ by an analogous calculation. Next,

aBéf 1 : aBaf 1 .
D€ Dac® = (Vﬁ,e + ZPBBWKW) (§274) (Vo@ + ZPM-Y,L,JW) (T)

= V35(6790)V 00 0 (5.15)

Da(dDméaﬂﬁ)ﬁ
1 PR | . .y
= (Va(a + Zan( Fomlal ZFKO‘( >(D6»‘y§ BB)’Y)
el aBB)A 1 & y aBB)4 1 & BB
=V, @Dy, e80T 4 ZE‘JW( [ D g 0P — ZF[KO‘( , Djgs |08

a 1 Y aBB)A & y y vl aBB)A
=V, (vm + ZJJW.JW)g O 4 B, i (—6" 0 D + 61 Mty o D)ot

Hft
— F(—eap0 D+ qs M, + 81, My)€2PP)i

= Va(dvﬁ;ygaﬁﬁ)"y + 2Eaﬁ/y(a£aﬁﬁ);¥ + Eoe;w(aMﬂ,B éaﬂﬁ)‘y + Eagﬂ(a]\_/f‘”‘ﬁéfo‘m”

~ FMapt™ (5.16)
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Da(dDmgozBB)*r

. . a1 &0 man BBV <o gl Y e
— Va(avmgaﬁﬁ)v+2Eam( A ( (e" 5555)7_{_5 Bguﬂﬁ)v+€u6€ 55)74_5566 ,UB)’Y)

9 oy
- ;EW( (—ePigeB 3 1 §P) gobics | clidlgasD, . g, cosbiiy
— F(8°,6,797 4 §°,6,098 4 6 €000 4 6 e )
= VOV, 099 4 6, CgoD)T (5.17)
By a completely analogous calculation, D aDssy €9 JRCTI viC o Vs ¢P) b 4 g ple 5 By
Diag D €545
Z(Vw+iEme%—iFKm0D%8MB
= Ve Dgg™ o+ Bunig K7, Dygle — L F[Kog, Dyl
= VaaDgse® + iEmdﬁ(—wﬁ(ﬁ D+ 487 M+ 487, M )gaBad
_ iF(—éLeaBedB}D) + deqyMap + 4€aﬁﬂdﬁ.)§aﬂd5

1 y y
_ . afaf _raBaB
= Vaa (V,@ﬁ +  Da I W>f +2E, 546

5 Bapar (196777 4 6%,69990 1 g%, 1 67 o0

2
1
+ 2Ea,yaﬁ(€7a£ Baf +5a g’Yﬂaﬁ +€’Y’Bfa % +66 ga'yaﬁ) 0
= VoV g2 4 6, 567 (5.18)

Finally, putting all these terms together,

aff 2 [e} af 2 & a8 B35 Vi 8 aBof
<§ PP DoaaDys + §D( &% Do Mgy + gD; £ Do Mg, + 5 Ds(€7*") Do
2 a5 2 e aBBY T aBaf
+ §D( oD 56079 Mo + §Da( D5 &M 4 + 15 Daa D6 ﬁ))xp

9 3 V6 & o
= £V 0s Vgl — PP 550 — B, JOEIDIN B € RECLRVAN 7

2

2 @ 35 2 & aBBA AT 8 afé
5V V0 M, B 4 SV, TV M g B 0V (6 Vo T

2 2 _
+ 9(v V& 4 6B )M W+ 5 (Va Vs €PN 4 6B, PN ;W
15(%&%[3(85&5) +6E, 5,567 W

afa o} ap 2 & ra BB AT 8 aBaf
= (g B Bvaavgg + gv( Bfﬂv) BvadMﬂry + gvﬁ( ¢ Bﬁ“/)VOCO,[AMBAY + §vﬁfj(§ B 'B)Vaa

2 1 2 1
+ (—V( Wfﬁ Yy + = —ple fﬁ)vaﬁ) Mgz + <§v (av gaﬁﬁv_l_ E gaﬁﬁ)v) Maﬁ

9 37 nap 3
20 v eosedy_ L p ey
+ 1_5 ad gﬁ(f ) - 1_0 aﬁdﬁf
= DYw. (5.19)
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There are several advantages to writing D® this way. Most saliently, the E, 545 terms have
disappeared when transferring from V.4 to Dag.

Therefore, simplifying v*V,D®¥ in the conformal geometry formalism is identical to sim-
plifying the expression in flat space while keeping track of commutators; the contribution of
E, 45 terms is no longer an extra complication in curved space.

The commutators themselves are also more convenient in conformal geometry. In the proofs of
theorems and [£.7] T spent many pages re-writing Riemann tensor descendant contributions
in terms of the Weyl tensor. However, in conformal geometry,

[Dy, Dy] = 2Copea M+ %Vd(Cabcd)K ¢in the b, gauge; the curvature factors are already written

2
in terms of the Weyl tensor.

More generally, if D™ is a higher symmetry candidate of ® and both ® & D™ are writ-
ten in the conformal geometry formalism, then proving ® DT = 0 (given T = 0) on flat
space automatically lifts the result to conformally flat spaces.

e.g. If Eastwood’s A higher symmetry candidates [I7] were re-written in the conformal ge-
ometry formalismﬂ, then his flat space proof that his candidate operators really are higher
symmetries of A is automatically lifted to conformally flat spacesﬂ This seems to have been
implicitly done already in [20].

The process of actually finding candidate symmetry operators, D™, is slightly different with
conformal covariant derivatives. Consider ¥ and v*V, for example. In this approach,
D™’ = 37/2 DM upon €/,™ = e“e,™ becomes two equations, namely DD ¥ = %D(”)\Il
and K,D™W¥ = 0. While the number of equations has doubled, there are fewer terms in D™
itself because the E_ 4,5 “compensating terms” are no longer required. I think the two effects
roughly cancel in terms of calculation time saved or lost. Each of DD™W¥ = %D(")\I’ and
K,D"™W = () is analysed by pushing (via commutators) D and K, towards ¥ and o1 ené1an
where (assuming £ 9n®14n ig conformal Killing - although I did not prove this for n > 3)
DY = 3@, DEorandrdn — _pgormandidn [ g = () and K,£* %% = (. An analogous
procedure applies for A and . I find the more pressing issue is that the “ad hoc” approach
to guessing terms which may comprise D™ is invariant upon the variation in formalism.

5T suspect this should be possible because his tractor calculus approach is known to be related to the
approach I am describing in this section.
60f course, A itself would also need to be re-written in the conformal geometry formalism.
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Chapter 6

Conclusion

In this thesis I considered higher symmetries of the relativistic wave equations for spin-0 and
spin-1/2 massless particles in curved space. I computed the higher symmetries using spinor
methods, conformal Killing vectors/tensors and the Weyl transformation properties of matter
fields in a conformal field theory. The main results I derived were the following.

e The conformal d’Alembertian, A =[] — %R, has a unique 1st order higher symmetry,

1
DW = ¢V, + 1 Val€) +& (6.1)
where £%(z) is an arbitrary conformal Killing vector of the manifold and £ is any constant.

e At the 2nd order, A has a unique (up to the addition of 1st order symmetries) physically
admissible higher symmetry candidate,

2 1
D? = ¢y v, + gvb(fab)va + 1—5vavb(£“b) — %Rabf“b, (6.2)

where £%°(z) is an arbitrary conformal Killing tensor of the manifold. However, D®® may
not be a symmetry in general. Instead,

AD®p = ( Cabcdvc(fbd)+5vd(c bcd)fbc>vtl(<p)

+ (%Cabcdvawgbd) + gvcvd(cdabc)gab + %vd(c e )V )) ¢. (6.3)
e The massless Dirac operator, 7*V,, has a unique 1st order symmetry;,
DI = €47 05 + SV M + SV I+ SV 46 (64
where £2%(z) is an arbitrary conformal Killing vector of the manifold and £ is an arbitrary
constant.

e At the 2nd order, v*V, has a unique (up to the addition of 1st order symmetries) phys-
ically admissible higher symmetry candidate,

D@ — faﬂdﬁvadvm 3v(a éﬁv)aﬁvaaMBA/ + 3v gaﬁﬁv) ]\_4
fﬂ)va )

(& rapps . . aﬁaﬁ

7
aﬁaﬁ
10 aﬂa6§ (6'5)

va3

8 aBaf 2 &
+5Vislé POV e + (§v< V590 4 - E

2 . N
+ (gva(avmgaﬁﬁ)v+
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where fo‘ﬁd‘g is an arbitrary conformal Killing tensor of the manifold. However, D may
not be a symmetry in general. Instead,

vV, D@

“V,D® F_Z"?‘}
v e

1 — .. 4 .
_ BB B B .
= [g(Cdﬁ-wfagw - Caﬁ waﬁ)v + (ECW av(ﬁ Sw)dﬁ

_ Ecamuvﬁ(ﬂfamﬁ) _ 5767 \v3 (Ca ﬂw) - gavﬁvvvu(cdﬁ.ﬁﬂ)) x4,
1 iy 4 ; .
af ap 065 afBs (5 aoff
g(c ,Wf’w -C f ’W) 5% (15 M’Yﬁ g § )
1

a N B)af _
- 1_50 ﬁw 57

7

T
B TUC < e 00 e o] (60

15

e Therefore, for both A and v*V,, while 2nd order symmetries definitely exist (just com-
pose two 1st order symmetries), not every rank two, conformal Killing tensor leads to a
symmetry. Conformally flat spaces (where the Weyl tensor is zero) are an exceptionﬂ.
There, more general higher symmetries are possible - not just compositions of lower order
symmetries.

e Actually finding the conformal Killing vectors/tensors of a given manifold is beyond the
scope of this thesis.

There are a number of unanswered questions - and therefore future research directions - left at
the end of this project. I have shown that conformal flatness is a sufficient condition to have
higher symmetries at the 2nd order, but I have not considered necessary conditions - see [20]
for further discussion on that subject. The greater unknowns though are the generalisations
to arbitrary orders, D™ . I envisage that endeavour requires a more systematic approach than
the one I have presented here. It will certainly require a generalised method of constructing
D™ and simplifying D™®T and I believe I have presented compelling evidence to suggest
conformal geometry would ease both tasks. An immediate step towards these overarching goals
would be to calculate third order higher symmetries of the conformal d’Alembertian and the
massless Dirac operator. As far as I am aware, neither task has been accomplished in general
in the literature, but should be readily achievable using the methods I have described in this
thesis.

!Conformal flatness is a sufficient, but perhaps not necessary, condition.
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Appendix A
Proof of theorem 2.10

I have to prove that under infinitesimal general coordinate, local Lorentz and Weyl transfor-
mations, covariant derivatives are changed as follows.

1
0V, = [ﬁbvb + S K" M., Va} + 0V, — V(o) My, (A.1)

and for a conformal Killing vector, £*(z),
1
0Vq = [5’)% + 5 K7€) Ma, va} +0(£)Va — V(0 (£)) Moy = 0

for K (&) = %(vbgc — V) and o(¢) = %vaga. (A.2)

Let T be an arbitrary tensor (as 7' is arbitrary, there is no use in writing its indices).
oV, T =V.T-V,T (A.3)

Because I am considering infinitesimal transformations, the three transformations (general,
local Lorentz and Weyl) can be considered separately and added together as there cannot be
any “cross terms” in the infinitesimal case.

For the Weyl transformation(]

oV, T =V'.T -V,T
= (Vo + 0V, — V(o) My)T — V,T
= (0V, — V(o) My)T . (A.4)
Next, for the local Lorentz and general coordinate parts of the proof, there is in some sense

nothing to prove depending on one’s choice of definitions. A tensor can be defined as an object
transforming as

TP — o™ @0+ K @) Myerp (A.5)
when exponentiating the infinitesimal £™ = 2™ —¢£™(z) and €/, (z) = e,™(x)+ K ,b(x)e,"(x) of

a general coordinate and local Lorentz transformation. The fact that an antisymmetric matrix,
K, defines an infinitesimal (local) Lorentz transformation follows from the form of elements

T will essentially devolve this part of the proof to equation
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in the Lie algebra, 0(3,1) = s[(2,C). V, can then be defined as a derivative preserving this
covariant transformation property. Therefore,
V' T = e&’"(w)f’m-i-%Kbc(I)MbcvaT
_ € @0t AR @My o€ ()0~ K@) My (A.6)
— VT = eé’"(w)am+%Kbc(:v)Mbcvae—é"‘(x)am—%K”C(ﬂc)MbcT
— @@ Mooy =€) FK @) Mo
— @OV B @) Mot F R (@) Moy € (@)t B @) (w) Mo~ K () My
— '@Vt K@) Moy (=€ (@) Vo= 3 K@) Myerp (A.7)
where K% = Kt — ¢, Then, taking the infinitesimal of the last equation and renaming
Rbc N Kbc’

VT = (1 + E(2)Vy + %Kbc(:c)MbC) V. (1 — &(x)V, — %Kbc(x)Mbc) T

_V.T+ <§b(x)Vb + %Kbc(x)Mbc> V.7 -V, (gb(x)vb + %K"C(sc)Mbc)T (A.8)

Therefore,

OV T = [fb(:c)vb + %Kbc(a:)l\/[bc, Va] T (A.9)

which completes the proof of the first half of the theorem.

Rather than postulating the transformation property of V,T', the alternative is to simply define
V, as eam8m+%wabc]\/[bc for wape = %(Cbca+C’acb—C’abc) and C,,¢ = (e,"On(e,™)—€, On(e,™))e,
This way, V, is just an operator constructed out of the vierbein and its transformation is de-
termined by that of the Vierbeinﬂ. For completeness, I will prove the 6V, transformation from
this perspective as well. First consider the local Lorentz transformation. The result I am trying

to get in this case is

1
3 [K" My, Vo] T

_ %( K" Myo(Vo(T)) — VoK Myo(T))

1
= §(Kbc(7]abch - nacvbT + vajw’bcj“’) - KbcvaMbcT - va(Kbc)MbcT)
1
= K,"V,T — 5va(Kbc)MbCT

1 1 1
= K,e,"0,,T + §KabwadMCdT — 5e;”am(f(bc)MbCT — ZwadeJW(Kbc)MbCT

= K,'e,"0,,T + %KadwdbchcT — %eamam(Kbc)MbcT
- iwade((sde ¢ —0%K% 4+ 0% K¢ —0°. K, )M"T
= K,%¢,"0,,T + %KadwdbCMbcT — %eamam(KbC)MbcT
e, — oK+ 0B — B MYT
= K,e,"0,,T + %(Kadwdbc — e, O (Kye) + K, "wapa + K} "waaqe) MPT . (A.10)

20f course, V, is defined this way so that V,T transforms covariantly.
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On the other hand,
oNJIT=V.T-V,T
1 1
=€ 0, T + 2wabCM”CT — e, 0T — QwabcM”CT

1
=K,'e,"0,,T + =

2 ( Wabe wabC)MbcT

= K, 0T + (Cbca + Coe
the — Cabe = Nca(C'y," — Oabd)
= Nea((€"On(€,") — €/ On(€, )) "t = (e On(e) = e Oule,™))e )
= Nea(K, €. On(e,") + €,"0n (K, €, )— Kyfe0n(e,") — " 0n(K, e.))ey”
+ 1ea(ey"On(e)™) — €,"Onle, ))Kd
= 1k, (6" On(ey™) — €,"Onle™)) ey,

+ncdean€ememdan(Kb ) NedCp "e e dan(K 6)

abc Cbca - C’acb + Cabc)MbCT (All)

- nCdee(e na”l(eam) - eanan(eem))e a

+(€,"0n(e,™) — € 0n(e,™)) Keae,
= Uchanebd - nchbeCea + ncdeanédean(Kbe) - Ucdebn5de8n(Kae)
+ CabdKCd
= K, "Cape — K, Cae + K *Capg + €, 0 (Kpe) — €, O (Kae) (A.12)

Putting these back into the expression for 6V,T',

1
6V T = K,’e,"0,,T + 1 (Kdedca — K, "Cppq + K, "Cheg + €, 0 (Koa) — €, O ( Ky

+ Kadcdcb - chcdab + Kdeacd + eamam(ch) — € mam(Kab)

c

— K, “Cape + K, Cae — K, *Copg — €, O (Kpe) + ebmf)m(Kac)> MbT

1 1
= KabebmamT + _Kad(Cbcd + C'dcb - Cdb(:)MbcT + ZLKbd(Cdca + Cacd - Cadc)MbcT

4

1 1
- Zch(Cdba + CVabd - C’adb)]w’bcir’ - §€am8m(Kbc)MbcT
1
= KabebmamT + é(Kadwdbc -+ Kbdwadc — chwadb — eamgm(KbC»MbcT
1
— 5 [KbCMb07 Va]T (A13)

by comparing with equation [A.10]

That leaves V,’s change under general coordinate transformations in the 2nd approach.

Let '™ = 2™ —£™(z) be an infinitesimal general coordinate transformation. First, consider the
transformation of a scalar, ¢(x), under a general coordinate transformation. By the definition
of a scalar, ¢'(z') = ¢(x). Therefore,

p(x' +§)
o(r +€)
() + M0 (9) |2 (A.14)

¢'(z)
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and hence dp = £™0,,p. Meanwhile, this expression can be re-written by

(€7 0m, o] = "0 (eT) — 9" 0 (T)
= fmam(SO)T + gmam(T)SO - ‘pgmam(T)
— 9, ()T (A.15)

Hence, since V, acts like a scalar under general coordinate transformations,

6V T = [0, VT
= [e,"€"0,,, VT

1
= |:§bvb - _SbwbchCda Va:| T

2
1
— [gbvb + §KbCMbc.Va}T (A.16)
where K% = —&wb. Hence, the general coordinate transformation can be written in the

required form.

Either way, putting the three types of transformations together,

1
(sVa = |:€be + §Kbchca Va:| + Uva - vb(U)Mab (A17)

for some &, K and o, thereby proving the first part of the theorem.

Having established 6V, = [*V, + 1 K" M., V.| + 0V, — V*(6) My in two different ways,
the next task is to find the conditions when 6V, = 0.

1
6V T = ([gbv,, + 5KbCMbC, va] + 0V, — Vb(a)Mab> T

1 1
=&V, VT + 5KbCM,,C(vaT) — V. (6PV,T) — §Va(KbchcT)
+ 0oV, T — V(o) MyT

1 1
= &V, VT = Va€)Vo(T) + 5K (10 VT = 00eVoT) + K"V (MyeT)

1 1
— §Va(KbC)MbCT — 5Kbcva(MbcT) + 0oV, T — V(o) My T
1 1

= 5R,mdngch — Vo (OV(T) + K,'V, T — 5va(KbC)M,,CT
+ 0V, T — V(o) MyT

= (K, = Dale) 4 050) 0T+ (GRS YK 4 0,5°0) ) M) (A1)

I am looking for 0V,T = 0 for arbitrary T', so I can freely choose T to be a scalar. In that
case, M. T = 0. Thus,

(K," = V(") + 6% 0)Vy(T) =0 (A.19)

on its own. Consequently, one must have

(%Rdab%d - %VQ(K“) + 5cavb<o)) My (T) = 0 (A.20)
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on its own too. Therefore, since T is still arbitrary, one must have
0=K,"—V,(&) +6" 0 and (A.21)
1 1
0= 5 Ry €~ SValK") 464,V (0) (A.22)

with the antisymmetrisation in § AVl (o) forced by the antisymmetry of M,.. Next, since Ky,
is antisymmetric, K, % = n®K,, = 0. Hence,

0= Kaa - va(éa) + 5aa0
1
1
= Ko = Vao&p — N0 = V& — Znabvcfc (A.24)

Again, since K, is antisymmetric,

1 1
vagb - Znabvcgc = _bea + anavcgc
1
— Vagb + nga = inabvcgc . (A25)

Therefore,

1 1
Kab - va&b - Znabvcgc - é(vaéb - vbga) y (A26)

which makes the antisymmetry clear. In summary, imposing 0V, = 0 = o = }Lvaga,
Kb = £(V€ — V) and V& + Ve = 510 V£ The last of these conditions is equivalent
to saying £* is a conformal Killing vector. All that is left to do to check the converse, i.e. check
whether choosing o = }Lvaga, Kb = %(vagb—vbga) and V&4V, = %nabvcgc — 6V, =0.
For that, all that is left to do given the above work is to check whether equation holds
for these particular choices of £%, Ky and o.

Raabe® = Va(EKse) + 21ea Vi (0)
= Rdabcgd - v(1(l<170) + ncavb(g) - nbavc(a)

1 1 1
= _[vba vc]fa - Eva(vbfc - vcéb) + chavbvdfd - Z‘:nbavcvdfd
1 1 1 1
= _vbvcfa + vcvbéa - §vavb€c + évavcfb + Vb (ivcé-a + §Va£c)
1 1

- Vc (§vb£a + éva§b>

1
= 5(—vac£a + chbfa - Vavbfc + Vavcgb + vaa&-c - chagb)

_ %([vc, Vila + [V, Valée + [Va, Vo)

1
= _§<Rdacb + Rdcba + Rdbac)gd
=0 (A.27)
Raising indices,
1 1
0= §Rdabcgd — §vaKbc + 6l Vo, (A.28)

which is indeed equation
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Appendix B

Proof of theorem 3.11

I have to show that Ay = 0 and
3

2 1
D? = ¢y, v, + gvb(ga”)va + 1—5vavb(§“b) - 1—0Rab£“” (B.1)

4 4
— ADPp = ([T + 5TCRE ) Tale)

15

2 2 4
+ (anbcdvavc(fbd) + gvcvd(cdabc)fab + Evd(cdabc)vc(€“b)) ¢, (B.2)

provided £% is a conformal Killing tensor. Therefore,

1
chab + vagbc + ngca — g (Tlabvdfcd + nbcvdgad + ,',/cavdé-bd)7
£ =" and £, =0 (B.3)

by imposing that £%° is symmetric and traceless and that the symmetric and traceless part of
Ve is zero.

10

I will now expand this term by term and use Ay = 0 and the conformal Killing conditions,
equation [B.3] to reduce the number of derivatives on ¢.

O(E™VaVip) = O(EP)VaVip + 2V(EP)V Vo Vi(0) + POV, Vip (B.5)
I will move the [J to the front in the last term. Expanding commutators in the standard way,
0, VoV = VV, Ve, Vo] + VOV, VoV, + V. [V, Vi |V + [V, V]V, V€
= 0V, Vip = £V, Vi0p + 7[00,V Vil
=V, Vu(Rp/6) + VV,[Ve, Vilp + VOV, Vo] Vi
+ V.u[Ve, Vi|[Vep + [V, Vo[V V) . (B.6)

Ve, Vil = 0 as ¢ is a scalar, [V, V.|V = Reara Ve, [Ve, Vo]V = R,V = Ry Ve
and [Ve, Vo] VoVop = RugaViVo + R VyVe0 — RuaVIVep + Ro Vo V. Thus,

1 2 1 3
AD®yp = (D - 6R) <D<2) = ¢,V + gvb(fab)va + Evavb@“b) - —Rabfab) v (B4)

1
POV, Vyp = 6gabvavb(fzgp) + €V (Reapg Vi) + €7V o (Rp V)

+ gabRcabdvdeSD + fabRacvbvcgp
1
= 58" VaVul(Bp) + 26 Reara VoV + 26 Ry Va Vo

+ €V Regpa) Vi + €0V o (Rye) Ve . (B.7)
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The next term to simplify is V¢(£%)V.V,V,(p). Using the conformal Killing conditions,
equation [B.3] and some of the previously calculated commutators,

Ve (éab)vcvavb(‘zp)

1
= gv%gab)(vcvavb + V. V.V + ViV .V, + [V, ViV + [V, Vi]Va)e

= %(VC(gab) + V(E") + V() VeV aVi()

n %VC(gab)([vc, Vo Vep + Ve, Vil Vi)
1

= S(VE™) + VHE) + VHENTVaTile) + 2V )V, Val Vo

3

3
1 2

= 5(77‘“’%(5“[) + 0" V() + 1V a(E) VeV aVi(9) + S VED) Ve, Val Vi
1 1 1 2

= §Va(£ab)Vchp -+ §Vb(§“b)VcVaVCcp + §Vb(£“b)DVa<p -+ gvc(ﬁab)Rcabdvd@

1 1 1 2
— gva(gabwbmw + 5%(&“’))[%, V3| Ve + §va<§“b)[m, Vil + gv%&“b)wadv%

1 2 2
= Eva(g“b)vb(&o) + §Va(£“b>[vc, V[ Vep + §VC<€“")Rcadedso
1 2 2
= Eva(gab)vb(mo) + §Va(§“b)RchCgo + §v0(5ab)Rcabdvdgp. (B.8)

The only other term in AD® ¢ that can lead to more than two derivatives on ¢ is

D(Vb<€ab>va90)
=0V, (£™)Va(p) + 2V V() Ve Va(p) + Vi () OVa(p)
= OV(E™)Va(p) + 2VV4 () Ve V() + Vi () VaO(p) + Vo () [0, Vale

= OVE)Val) + 2V TlE)VTal) + GTE)ValRe) + V€ RacVop.  (B9)

No commutators are required for the remaining terms in AD®¢. Hence, substituting the
previous page of expansions into equation gives

1 4 4
AD®p = O£V, Ve + §va(§ab)vb(3¢) + §Va(§ab)RbCVCg0 + gv%gab)wadvdgp
1
+ ggabvavb(}z@) + 26 Reapa VeV a0 + 26 Ry Vo Ve + EVE(Regpa) Vi
2 4 1
+ Vo (Rye) Vo + gﬂvb(f‘”’)va(so) + gvcvb(fa”)vcva(so) + §Vb(€“”)va(Rs0)

2 1 2 1
+ V(™) Rac Vo + —OV V(™) + = VeV, V() Voo + —V, Vi (€2)O(y)

3 15 15 15
o i ab o § c ab o 3 ab o 1 ab
1OD(Rab£ )30 5V (Rabf )Vc((p) 10Rab€ DQD 6R£ VaVb(P
1 1 1
— §va(§“b)va(¢) — %Rvavb(gab)w + %RRabf’“bap. (B.10)
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Then, using Oy = Ry/6, expanding some V(-) by the product rule and packaging together all
terms with equal number of derivatives on ¢,

4
AD(Q)(p — {D(fab) + 2€CdRacdb + 2£aCRCb + gvbvc(fac)}vavb(@)
4 4 1
+ {gvc(fdj)Rba + §V0<€db)Rcdba + gfabvb(m + EPVE(R ") + EPV(R,)

2 1 2 2
+ gﬂvb(ﬁab) + §RVb(§“b) + 5%(3”)&“ + BV“Vch(SCb)

3

- gva(Rbcfbc) }va((p)

+ {%%(é“”)vb(m + éﬁ“”vavb(m + %Vb(ﬁab)wm - %DV“V"@GZ))

3

- ED(Rabfab)}‘P- (B-11)

Then, collating some terms,
4
AP = {O(E™) + 26U+ 2R+ 3TV [T

10 4 1
LGRS+ T R+ TR + € () + VR

2 1 2 3
+ gDVb(é*‘“’) + §va(€“b) + BV“Vch(ﬁd’) - gV“(Rbcébc)}Va(w)

+ {gva(gab)vb(m + égabvavb(}z) + %Dvavb(gab) — %D(Rabﬁab)}gp. (B.12)

Let {i} denote the coefficient of the term with i derivatives of ¢. On each {i}, my strategy will
be to use commutators and the conformal Killing equation to first cancel out all terms without
curvature factors.

I will start with {2}. The conformal Killing condition is

1
vcgab + Vagbc + vbgca — § (nabvdfcd + nbcvdgad + ncavdé-bd) (B]_:)))

Therefore,

1
¢ 4+ V Ve + V, Ve = 3 (nabvcvdgcd + VIV, + vavdfbd)

= (DL 4 2VTENVLT4(0) = sTTHEND() + S VIVENTIV)  (B14)

Re-arranging,
(6™ 4 2VPV % 4 2[V., VPIE™)Va Vi ()

_ %Rvavb({f“b)w + gvbvwcwavb(gp) , (B.15)

and thus
D(fab>vavb((p) = _gvbvc<§ac)vavb(()&) - 2[VC, vb] (fac)vavb<90) + 1_18Rvavb(€ab>90'
(B.16)
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[Vw vb]gac — Rcbadgdc + Rcbcdéad
— RadchCd + SaCRcb (Bl?)

= D(€Gb>vavb(gp) - _gvbvc(éac)vavb(gp) - 2(Radcb§Cd + gacRcb>vavb(gp)
+ LRV, (B.18)

Hence, {2}V, V,(p) = 7RV, V,(£7)p and {2} can be absorbed into {0}. That leaves

10
AD(2)<p — {_

9

F2OVAE™) + GRVE?) + VW V5(e?) - gV“(Rbcébc>}Va(<p)

4 1
V()R + gvc(fdb)Rcdba + §fabvb(R) + PV (Rp") + €V e(R,)

2 1 1 3
+{EVAEIVAR) + VTR + OV - (Rt

+ %Rvavb(gab)}ap. (B.19)

Like before, in simplifying {1} T will try to cancel OV (£%°) with V2V, .V, (£?) at the expense
of curvature terms.
OV, = V0 + [0, V,J6% (B.20)
(O, VpJ€% = [V, V,)¢%

= VO[Ve, VI + [V, Vi V€

= V(R o€ + Ry g€™) + Ry V€™ + Ry "y VE” + Ry V€™

= V(R = Rof™) + Ry V™ + Ry V6D — R, 06

= V(R €™ — Rog€) + R, VE™

= 2R, VP + EPV(R ) — VO(Rea)§ — RegVE(£™)

1
= 2R, VP + EPVE(R ) — §Vb(R)fab — Ry Ve(£™) (B.21)
Then, by equation [B.14]
1
vbmgab —_ Vb( o vcvaébc . vcvbfca 4 5 <nabvcvd£cd 4+ vadfad + Vavdgbd)>

1 1 1
= —V, V.V — Vv,V Ve + gvavcvdgcd + gmvbsab + gvbvavdgbd

1 1 2
= =g VIV = [VeV, VI 4 2 [V, VOV, = 20V

— V[V, VI
1 2 2
— _gvavcvbgcb . vc[vbu Va]é-cb . g[vc’ Va]bed) . gDvbgab

— V[V, Ve (B.22)

V[Vo, VJED = Vo (R,%,6% 4 R, o)
= =V (R"%al™) + Ve(RyE?)
= —V(RY)E” = R VO (ED) + Ve(By)ED 4+ RIV(67) (B.23)
Ve, VOVRE? = R %, V™ = R,V £ (B.24)
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Vc[vb7 vc]é-ab — vc<Rbcad£db + Rbedfad)
— vc(Rabdcgdb) + VC(Rcbgab)

1
= — V(R )6 — R VEP + §Vb(R)§ab + Ry VE™ (B.25)
Substituting back and re-arranging along the way,
1 2
vbljgab _ _gvavcvbfd) . gDvbgab + vc(Rade)é-db + Radevc(fdb) . VC<Rba)§cb

2 1
_ Rbavc<£cb) o _Rbavcgbc + Vc(Rade)gdb + Radevcgdb . §V5(R)€ab

3
. Rcbvcgab
1 2
— _gvavcvbgcb . §|:|vb€ab + ch(Rade)é-db + 2Rab6dvc(€db) o Vc(Rba)€Cb
5! 1
- gRbavcgbc - 5vb(R)gab — R VeE™ (B.26)

= OV,¢® = V,0¢% + [0, V, 6%
1 2
— _gvavcvbgcb o gl:]vbé-ab + 2vc<Rabcd>§db + 2Rab0dvc<€db) o VC(Rba)é-cb

5 1
— gRbavcfbc _ §Vb(R)€ab _ Rcbvcgab + 2Rad6bvc5db + gdbvc(RadCb)
1
- §Vb(R)§ab — Ry VE(E™) (B.27)
5 1
gmvbfab = —gvavcvbfdj + 3V RYeg)E™ + AR g V(D) = V(R )E?
)
— SR VL = Vi (R)E = 2R VE (B.28)
2 ab 2 a cb 6 c( pa db 8 a c(¢db 2 a\ ¢cb
gmvbf = —1—5V VeVl + gv (Req)E™ + gR beaV(ET) — gvc(Rb IS
2 2 4
- gRbavcgbc — 5V,,(R)gab — chbvcg“b . (B.29)
With this equation, {1} can be re-written as
10 4 1 1
{1} = gvc(fd))Rba + gvc(fdb)Rcdba + g&abvb(R) +EPVA(R.g") + EPVAR,) + §vafab
3 6 8 2 2
— gva(Rcbgcb) + gvc(Rade>£bd + gRabchCde - gvc<Rba)£bc . §Rbavc(fbc)
2 4
_ gvb(R)gab _ chbvcgab
— Z_lR avc(fcb> + iRa vc(é}bd) o lvb(R)gab + lvc<Ra )é‘bd + §VC<R a)ébc
1 3 4
+ §va(5ab) — gva(Rcbgcb) — chbvcg’ab. (B.30)

Then, via V(R ) = V(R.,") = =V (R.y") = Vi(Bey™) = V*(Rea) = Vi(R,"),

4 4 1 2 1
{1} = §Rbavc(50b) + ERabchC(fbd) - Evb(R)fab + gvc(Rba)fbc + §va(fab)
- gva(Rd,)gcb — gRvaa(gbC) — %Rebv%gab) : (B.31)

Having removed all “curvature-free” terms from {1}, I will leave its analysis here for now and
try manipulate {0} in the same way.
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From equation in {0} the only term without a curvature factor is [V, V,£%.
OV, V% = V, V0% + [0, V, V€% (B.32)
[0, Vo Vi€ = VOV, VaVolE™ + [V, Vo V| V€™
= VVa[Ve, VoJ€? + V[V, Vo | Vil? + Vo[V, Vi | VP
+ [Ve, Vo |V Vg (B.33)

Again, using the conformal Killing equation,

V. V0% = vavb( — V, Ve — v, vhee

1
+ g (nabvcvdgcd + nbcvcvdgad + ncavcvdé-bd))

1 1
= —V,V, V.V — Vv, V, V. Ve + gmvavbgab + gvamvbgab

1
+ gvavbvavcé’c : (B.34)

VoV, V. Ve = OV, V™ + V4 [V, V., Vb
= OV, Vié? 4+ V.V, [V, VYE" + Vo[V, VIV, £ (B.35)

Vo VoV VP =V V,V VP + [V, V|V, Vo
= OV V™ + V[V, V., VIE“ + [V, V|V VPE“
= OV, V™ + Vy Vo[V, VIIED + V[V, VIIVED + [Va, V]V V'E (B.36)
VOV, = OV, V€™ + [V, O]V,
= OV, V™ + VOV, VI Vil™ + [Va, V VTV, (B.37)
VoV ViV £ = OV, V™ + Vo[V, VIV £ (B.38)
Substituting back,
V. V6% = —OV, V™ — V, V[V, VOEY — Vo[V, VIV L — YV V[V, VP]E

VIV, VIVE — [V, VTV + STV, VIV
+ %[va, V. VeV, + %va[vb, VoV, L%

= —[OV, V% — 2V, V,[V,, Ve — %vcm, VVl® — [V, V]V .V
+ %[Va, V. VeV, . (B.39)

Therefore,
OV, V5™ = V,V, 0% 4 [0, V,V, |62

= OV V" = 2V, V4 [V, V™ — %VCM, VeVl = [Va, Vo]V V6
+ %[va, V V™ + VOV, [V, Vi €7 + VeV, Vo V5™
+ Va[Ve, Vo] VEE? + [V, VoV, VEED

7
= DUV, VI — LYV, VIV + [V, VIV,
1 1
+ g[va, V. VeV, + 5va[vc, V| Ve (B.40)
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It is now time to evaluate each of these commutatord!]

Ve Vo[V, VIE™ = V. Vi (R, 6P + R, %67

= VoVe(R,€%) 4+ VVY Ryean™) (B.41)
VeIV, Ve Val® = V(R Vo™
= V(R V™) (B.42)

[VC’ va]vaCéfab — Rcacdvbvdgab 4 Rcaadvbvcgdb
= RogVyVE™ — RV, V™

0 (B.43)
[va7 vc] vcvbé-ab — RaccdvdvbgabRacadvcvbgdb

= ~RaaVViE"™ + ReaVoViE"

—0 (B.44)

ValVe, Vi V€™ = Vo(Ry VI + Ry V" + R, V™)
— Va(Rbdvdfab + Radvacgdb o RchC£“d)
= Va(Radcbvcfdb) (B-45)
Altogether,
OV, V% = —gvavC(RbagbC) — gvcvd(}zacdbgad) — EVC(Rcbvagab)

1
L0, (B.40)
Putting this expression back into equation [B.19]
2 1 3 1 1
{0} = S Va(€®)Vi(R) + 2PV Vi(R) — —O(Rap™) + =RV Vi (€7) — =V V. (R,€™)
9 6 10 18 10
7

1 cxvd ab c ab 1 a cedb
1A C = AN C a on Ya . B.4
SV Rueas€™) = 5oV (RaVa™) + 3 Va2 V°EY) (BAT)

To progress further, I will need to expand each of the terms coming from the commutators
above.

VaVe(R,"6") = Va(Ve(R,")E" + RyVe(§"))
= VaVe(R))E" + R,"VaVe(§") + Ve(Rap) V(6") + %Vb(R)Va(ﬁab) (B.48)

Vo Rucas = VI Rapac
- _vaRdbcd - vCRdbda
= Vol — VR, (B.49)
V< Raear) = —Va(Rue") = Vo(Re'q) = —Va(Rap) + Vi (Raa) (B.50)
= VVY(Roear€™) = VIV Ractn) € + Racan V(™))
= V(Va(Rpe)™ — Ve(Rap)E™ + Raear V(E™))
= VVo(Rpe)E™ + Vo(Rpe) VE(E™) — O(Rap) €™ — Ve(Rap) V(™)
+ V(Racar) VHE™) + Racan VEVH(E™)
= RacayVVH(E?) + VOV o (Rye)§” — O(Rap)E™ + 2V o (Rye) VE(E™)
— 2V.(Ra) VE(£™) (B.51)

!Technically, the curvature-free terms are already gone since all commutators generate Riemann tensors and
their descendants.
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1
VRV £ = §v,,(R)v@gab + Ry VOV % (B.52)
Vo R, VE®) = Vo (R4 ) VE? + R,V VEP
= — V(R 3a)VE" = Vi (R 1) VE" + Raped VOV E™
= Va(Roe) VA" — Vo(Rye) VEE™ + Rapea VOV (B.53)

With these expressions,

0} = 2VuEVu(R) + SE"V,Vo(R) — 5 O(Rut™) + T RYVAEY) — 1 VaVe(ROE

10
_ i a bcy i a(¢bey i ab
10Rb Vavc<§ ) 10V0(Rab>v (5 ) 2ovb(R)va(€ )
1 cxod( ¢ab 1 c ab 1 ab 1 c(¢ab
R - — [ S
mRacde V™) 10V Va(Rpe)§™ + 10 (Rab)§ 5va(Rbc)v (€")
1 cf¢aby L aby l c ab i a¢be
+ 5vc(Rab)v (5 ) 180vb(R)Va(€ ) 90RcbV Vag + 3Ova(Rbc)v 5
o i ceab i axyc¢bd
3Ova(Rbc)v g + 30F£abcdV v g
= ZVLENV(R) + EVaThR) ~ fO(Ra)E™ — o0 Vel Bap) V(™) — - Rl IE™
- 15 a b 6 aVb 5 ab 30 c\{Llad 10 ab
i aby l c ab é c aby 1 c(¢ab
+ g RYGTE) = STVl Bl = L RaVVa(€™) = 590 Rur) V(™)
2
+ 15 Raea VVE. (B.54)
Hence, so far I have
(2) 4 a cb 4 a c(¢bd 1 ab 2 a)\ ¢be 1 ab
ADP = § SRVE) + o Ry V(M) = o Tu(RIE™ + ZV(R)E + 5 RVY(E)

2 3 4
- 5V“(Rcb)§d’ - gRch“(ﬁbC) - 5RcbVC(§“b)}Va(90)

2 1 1 11
+ {Bva(gab)vb(R) + égabvavb(R) - gD(Rab>€ab - %VC(Rab)VC(gab)

— 3 ab i aby __ 1 c ab __ E c ab
10Rab|:|§ + 18Rvavb(§ ) 5v va(Rbc)g 45ficbV Va(é- )

1 2
- gva(RbC)vc(ga()) + 1_5Rabcdvavc€bd}90 . (B55)
It is not possible to use the conformal Killing equation on terms contracted to the Riemann
tensor because the conformal Killing equation requires symmetrising indices; the Riemann
tensor’s antisymmetries then give zero. To work around this issue, I will re-write all Riemann
tensors in terms of the Weyl tensor, i.e. via

1 1 1 1 1 1
Rabcd - C1abcd + §naCRbd + §nbdRac - §nadec - §nbcRad + éRnbcnad - ERnacnbd . (B56)
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In {1} the only term with a Riemann tensor is 7 R%,., V(™).

1 1
Radevcgbd — devcgbd + 5a Rbdvcfbd + 77b R vcgbd o 5é‘adecvcgbd . §nbcRadvc€bd
+ éRnbcéadvcfbd . ER(;aCnbdvcébd
1 1 1 1
— Cadevcgbd T §Rbdva£bd + §Racvc5bb o §Rbcvc£ba _ 5Radvbgbd
1 1
+ ngbgba — 6Rvagbb
1 1 1 1
— Ca[)@[vcgbd + §Rbcva€bc o §Rbcvc5ab o éRbavcé&bc + 6vafab <B57)
Substituting this back into {1} gives
2 7 7
1} = a bc__ ab = a\ ¢be ab a bc ' a ¢be
{1} = RV 5V + SVARDE + e SV RLIE — R
14
T — Ry, V™ + ] 50 oa VEE (B.58)
Then, by the conformal Killing equation,
1
Rbcvagbc — Rbc( o vbéca . vcgab + g <nabvd§cd + ,r]bcvdé-ad + ncavdgbd>)
2 1
= —2R, Ve + gRbavcé’c + =RV, &% (B.59)
Therefore,
1 ab 2 a\ ¢be 2 a be 4 a c¢bd
{1} = —1—5Vb(R)£ + EVC(RI, )& — SV (Rpe)&™ + BC e VETT. (B.60)
Next, the Bianchi identity in terms of the Weyl tensor is
0= V,R". + VR, + VR,
- v C ebc + vbc eca + vCc(deab
+V Lsi g + 177 RY, —lédR 177 R4+ 1R77 5% ——R(Sdn
a2bec 266 20 2€b 6 eb bllec
1 d 1 d 1 d 1 d 1 d 1 d
+ Vb (25 cRea + 2neaR 25 aRec 27760R + 6R776¢:5 6R5 cNea
1 1 1 1 1 1
+ V. (—5daReb + 217€de - 5(5‘1 Reo — ZneaRdb + 6Rnea(5d - éRédaneb) (B.61)
— 0= V c" ebc + Vbc eca + vCC{aeab
+V 5“R +1 R 15“R L R", +1R 0%, 1R5“
a 2 pLlec 27760 9 clleb — 2776b 6 Tleb 6 pTec
1 a 1 a 1 a 1 a 1 a 1 a
+ Vb <§(5 Rea + 2neaR - 25 Rec 2neCR + 6Rnec(5 GR(S cnea)
1., 1 1., 11 ool
+ V. (55 oLeb 2nebR - 55 yRea 277eaR p T 6R776a5 6R5 a'r]eb>
S| 1 1 1
= Vac ebe §vaec + E?’]ecva + §VCR€1) - EnevaR (B62)
1 1
= 0= VyRae + G VeR = VeRay = cnac VR = 2VaC"y, (B.63)
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Then applying the last equation to {1},

6
__g a bc_i ab 2 a bc_é dcra be B

2 1 1
0=-¢ (V“(Rbc) + gé%vc(R) =V (Ry") = =meV(R) — Wd(cdb%))gbc

That finally results in
4 a c¢bd 4 d(rva be
{1} = 1_50 bea VE + gv (C%ea)€™ (B.65)
which finishes the required manipulation for {1}.

Next I have to deal with {0} where the only term with a Riemann tensor in it is %Rabcdvavcg bd,
Writing it in terms of the Weyl tensor,

1 1 1 1
Rabcdvavcgbd - (Cabcd + §naCRbd + 577bdRac - §nadec - §nbcRad
1 1 avvc+bd
+ ERnbcnad - aRnacnbd V*VeE
axrc~bd 1 bd 1 avrc b 1 cebd 1 a bd
= CapeaV*VE" + §RbdD§ + §Racv Ve, — §Rbcvdv § — §Radv Vié
1 1
+ ERVdbebd — Engbb
1 1 1 1
= Copeg VOV + §RabD§“b — §Rbcvavcgab — incvcvagab + 6Rvmvbgab.
(B.66)
Substituting this back into {0},
[0} = SV (R)VAE™ + €0V, Ty(R) — 2O(Ra)E™ — oV, (R) VE™ — - Ry
— 15 b a 6 aVb 5 ab 30 c ab 30 ab
7 ab 1 c ab E c ab 1 ceab
+ gonavbg 5v va(Rbc)€ 45RbcV vag 3va<Rbc)v 5
1 b 2 bd
- T c Va cer T = Yabe Ve B
15RbVV£ +15C’deV§ ( 67)
From equation
1 1
0= Vb(Vb(Rac) + gnabvc(R) — Ve(Ra) — gnacvb(R) - 2Vd(0dabc))§“
1
= O(Ru)E% + évavb(}z)gab — VV o (Rpe) €% 4 2VV 4(C2, )€ (B.68)
Therefore,
2 , 6 p 11 b 7 b
- = aa__Daa__ca ca__aDa
{0} 15Vb(R)V § 5 (Rap)€ 30V (Rap)VE 30R 1€
7 ab 4 c ab E c ab 1 c¢ab
+ 9ORvavb€ + 5V Va<Rbc>€ 45Rbcv vag 3va(Rbc)v g
1 2
— 1—5RbCVaVC§“” + anbcdvav@d —2VeV4(04,, )E7 (B.69)
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1

- (nabvdgcd + anVdfad 4 ncavdé-bd))

Rab‘:’fab = Rabvc< - Vafbc - beca + 3

1 2
= 2R, .V, V€™ + ngavbgab + gRbcvcvaga” (B.70)
2 6 11 4

— {0} :1—5Vb(R)Va§“b _ gD(Rab)gab _ %Vc(Rab)Vcéab + gvcv(,L(Rbc)g“b

2 1 9 9
— gRbcvcvafab — gva(Rbc)vCSGb + gRbcvaVCfab + BCadevavcfbd
—2VeV4(C, )E? (B.71)
V(Rup) V(™) = V(R ( V() - Ve

1

+ g (nabvd(fcd) + nbcvd(gad) + ncavd(gbd))>

= =2V (Ra)V*(£") + %VC(R)W@“’Z) + %V”(Rab)w(f“d)

+ %va(Rab)vd(gbd)

= “2V(Ra)VH(E") + S V(R) V") (B.72)

Hence,

1 6 4 2 2
{0} = =g Vi(R) V™ = ZO(Rap)¢" + =V Val(Rpe)E™ = =RV Vo™ + 2V Rap) V7E™

2RIV E - Copea VTG — 297V (0 )6
= VRV — SR + SV Vol Bi)e + 2Vo(Rua) V€™
+ ;Rbc[va, Ve + %Cdbedvavcgbd —2VV4(C%, )E (B.73)
Then, from equation
0= (vbmac) + énabvc(R) — Ve(Rap) — énacvb(R) - 2vd(0dabc>) V(&™)

= V(Rac) V*(£7) + éVc(R)Va(fac) = Ve(Rap)V(§7) = 0= 2Va(C% ) V(€7
abc

= V(Ra) VE) + SVURIValE”) — Vol Ra) V*(€) — 294(CY, ) 9(E)

= gvb(R)va@“b) — 3Ve(Rap) VH(E™) — 2V4(C%, ) VO (€7, (B.74)

abc

where the last line was derived using the expression for V.(Ry,)V¢(£?) from above. Thus,

6 4 2
{0} = ‘55<Rab>5ab + gvcva(Rba&“b + = RocVa, Vel
2 4
+ ECabchavcfbd — ZVCVd(Cdabc)gab — 1—5Vd(0dabc)vb(§“) (B.75)
Rbc [Vaa vc]gab — RbcRacadé-db + RbCRacbdgad
= RbcRcdé‘db + RbcRad’dS“d (B.76)
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Again, I will re-write the Riemann tensor in terms of the Weyl tensor.

1 1 1 1
R, = (Cade + §5baRcd + §5Cdea - QnadeC - 57766Rad

1 1
+ _Rnbcnad o gRébaécd) gad

6
1 1 1 1
cb ¢ad c ~bd b cac be a ad, be
= "R “Rb g% — _Rhe¢® _ "R,
1 1
R bcea R be
ch ¢ad 1 c ¢bd 1 b ¢cd 1 be ad 1 be
=C, 78" + §R a8+ §R a8 = 577 Raa€™ — ng (B‘77)

Substituting that back,
1 1
Rbc[vay Vc]gab — RbcRcdfdb + Rbcca,d)dfad + §RbcRcd§bd + §RbcRbd€Cd

1 1
o §RbcnbcRad£ad o gRbcRgbc

2
= R"Clipeq€®™ + 2R, R, ™ — §J%J%abg“’. (B.78)

With the benefit of hindsight, another term in equation that should be re-written is
vcva(Rbc) = Vavc(Rbc> + [vc) Va]Rbc

1
= évGVb(R) + Rcabdec + Rcacded
1

= 5VaVi(R) + Reapa R + Ry RS,
1 . 1 1 1
- §vavb(R) + RacR b + (Ccabd + §nchad + §nadec - §ncdRab

1

1 1
__aRc _Ra c__Rca RCd
277b d+6 NabTed 6 77b77d)

1 1 1 1
— 5vavb(R) + Rae R + Ceapa R + 5 BacBy + SRR, — SRR

1 1 1
- _nabRcdRCd + _R277ab - _RRab

2 6 6
1 3 . a1 . 2
= §vavb(R) + §RacR p T Ceapa R + §RbcR 0= gRRab
1 1
- §nabRcdRCd + 6R2nab . <B79)
Therefore,
1 2
VOV o (Rye )% = 5%%(3)5‘“’ + 2R, R%EY — gRRabg“b + CoapaR4E™ (B.80)
Putting the previous two parts together,
4 c ab 2 c] ¢cab
gv Va(-Rbc)g + gRbc[vaa \% ]5
12 4 2 6
= EJ-z(u,,RCbgab — gRRabg“b + =VaVi(R) + gcabcdecgad (B.81)
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Then, using equations [B.68| |B.80| and |B.81| (in that order),

6 1 6 12
0= —5D(Rab)£“b — gvavb(R)g“" + gvcva(Rbc) — gvcvd(cdabc)gab
6 ab 1 ab 3 ab 12 c ¢ab 4 ab
= —gm(Rab)g — gvavb(R)g + gvav,,(R)g = Rae R = S RRad
6 12
+ 5CfcabdRcdgab o gvcvd(cdabc)fab
6 2 12 4
= —gm(Rab)gab + gv o Vi(R)ED + ERacRa,gab - 5RRab§“b
6
+ oI — 2TV (O e
6 2 12
_ —ED(Rab)f’“b + 5vcva(Rbc)gab + 5Rbc[va, Vveled — Echd(odabc)gab. (B.82)

Substituting this expression back into equation |B.75

{0} - adevachbd + vcvd( abc)gab - _vd(c abc)vb(gac) (B83)

Using the last equation together with equation one finally has

4
AD(Q)QD _ {145 dvc(gbd) + 5vd<c de)gbc}va(so)
+ {%CadeV“VC(fbd) —+ %chd( abc)gab _ _vd(cdabc)vb(fac)}@, (B84)

which proves the theorem.
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Appendix C

Proof of theorem 4.7

I have to show that the only candidate for a physically admissible, 2nd order higher symmetry
of the massless Dirac operator such that D/®W’ = ¢37/2D@W under a Weyl transformation is

8 aB6f
_vﬂﬂ(f g B)Vad

2 (& raBBA AT
3Vs € VaaMp, + 5

3
(a B)vép

y Dt
DA — gaﬁaﬁvadvﬁg + gv( Béﬁv)aﬁvade +
1

2
+( vV, 557“ﬁ+3

9
20 (oo o)y L Ly (GraBh) apafy T asaf
+ §va vﬁ"}’é + _Ea § Maﬁ + = Vaavﬁﬁ(g ) T 1n a[)’aﬁg

3 10
(C.1)
and subsequently
ay D@g = 1 O e oo K Vﬁﬂ & 4 0L v/ s
Y a - g( aB gaﬁﬂ/,u_ af 'yuozﬁ) 1_5 a ¥ (B 5’YM) B
1 — e T o .
_ Egdﬂvuvﬁ(ﬂga%m _ = fwﬁv \va3 (Caﬁw) _ 1_5 gawﬂvku(cdﬁ.ﬁﬂ)) X%,
1 L o .. 4 _
af & af «@ . & (Bea
5(0 wgw B _C wg BW)VBB@/)OC + (1501176 Vﬁ £ BYE)
1 ( s 9 e 7 . T
_ Ecaﬁwv #Bé%vﬁ)aﬂ 155 vﬂvv7 (C«aﬂvu) _ 1_5 Wﬂﬁavuv(caﬁvu))%] '
(C.2)

To start off with, I only have equation 4.47], namely

D® = g9 4V s + €990V o Mg, + £V M g + €94V g + €28 Mg + €9 M o5 + €,
(C.3)
with £o8e8 = ¢(aB)(@h) gabra — (B cadBy — ca(aby) caB — ¢(aB) gpd ¢4 = ¢(@8) From

here, I have to constrain the lower order coefficients in terms of the top component, thereby
deriving the claimed form of D®. In analogy with lemma I will begin by evaluating
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72V D@ W (albeit term by term because the whole expression is too long).
Va(gaﬁd,é’vadv \I’) _ [ e (g'a>ad:| Va<€576'7v66V—yfywa)
BB _(O.a)aa 0 va(gmﬁwvgngf(a)
V@(fﬁ”@vwvwxd)
_vaa ( gﬁvﬁv vﬁff VW@ZJQ)
Vaa(fmm)vﬁngf(d + gﬁvﬁ'&vadvﬁﬁ.vwxéy
(
(
(

_vad £BBY V5 Voita + gﬁwﬁﬁvadvmvw@ba

)
_ | Vaa éﬁw)vmvvﬂd + 5575:*[Vm, vﬁﬁ'vwb_(a
_vao'z gb’wﬁ#)vmvw%é + gb’wﬁ# [vad’ Vgg'vw]@/)a

«Q

(C.4)

as VaaX® = 0 and V%), = 0.

Since a commutator reduces the number of derivatives by 2 and each of the remaining terms

in D® has at most 1 derivative, 7V, D®W can have at most two derivatives on W.
aa(gﬁvﬂv)vﬁvwx and VQO‘(SMBV)V@BVWwa are two such terms. Since £5787 = ¢BNBY

by equation @

VTN 15V
a1 Sy Py P e (a .
= (V(a(agﬁw)ﬁv) + g(gaﬁvu(agwﬁv) + gavvu(agﬁuﬁv) + 5aﬁv( ﬂgﬁw)w + gavv( ﬂgﬁw)ﬁ#)

9
X V35V 0 (C.5)

+ _(8aﬁgaﬂvw§ww + g 5avvuﬂ§w5# + Eavgaﬂvw gﬂuw + 5av€avvwgﬁuﬂu))

eV 55 Vastha = VgV 10, = 0 and 6aBVﬁBVW@/JO¢ = Vaﬁ-waa. The latter simplifies to

VW% ZVWVQB% [ a‘ VWW

=0+ (R", "M + R, " Ms)ta
— 6a
Bosy Yo
= (3,05, e B™y 4 55(8750%, + 6°,6%) F)ha
= B st +3e,5F ), . (C.6)

Plugging this back into the expression above,

Ve (EPV 3 Vot

alé 34 . apola 5 p i (@ 3
_ (v( ( gﬂv)ﬁv) + 5(6 ﬂv( ﬂgﬂv)w +e vv( ﬂﬁm)gu))vﬁngiﬁa

+

(an-ﬁwa + 3573F1p7)v#(d£wﬁ’y)

<Edﬁvwfww + gdﬁvuﬂfwuﬁ’l)(an#/fa + 3875F¢7>

Ol LWl

canin L ah (e e (e o8
v(e@ghnBy) g(saﬁv( ﬂgﬁv)w + g8yl ﬂgﬁv)ﬁu))vﬁﬁ.vw%

I
R

;E v (afﬂvﬁw)w + ;Eaﬁaﬂv (5575V)¢ _ (C.7)
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Some further simplification is possible because
gdﬁv(aﬂgﬂv)ﬁﬂvgﬁ.vvﬁd]a _ ed’BV(“p£BV)WVWV55¢a
= 5aﬁv(aﬂgﬁ'y)wvﬁﬁ.vwwa + 5aﬂv(aﬂ§l37)w[vw7 Vislta  (C.8)
and the commutator term can be decomposed to
€dﬁv(aﬂ gﬁv)w Vs, VBBW}O‘
= V(aﬁfﬁv)ﬁﬁ [V'y% vﬁd]wa

= VPR My + R g™ M P

_ V(QB BBy Rwﬁdauwﬂ

_ V(O‘BSM)B&(—(S%CWM“ + 575Ea’ﬁ.y°" — 0% (=0 3800 — 0" E5a) F)y

_ V(aﬁgﬂv)d/&’caﬂwwu_ (C.9)

Thus finally,
o a2 1 (o ara
Vaa(gﬁﬁﬁﬁ)vﬁnglba — (V(a(afﬁv)b’v) + 58aﬂv( ugb’v)w) Vi Vit + §V( BSBV) ’BCQ,BVMW
1 i 2 ..
+ gEavﬁﬁvﬁ( PN, + §E B va(gﬁwﬂv)wa _ (C.10)
Similarly, for the other term in ’y“Va(faﬁ‘w VsV ¥) with two derivatives,

Vo (€759 V 45V 5
=Vaa (gﬁyﬁ.ﬁ)vﬂﬁ vwxd

1 . .
- (V(“(dfﬁv)/ﬁw + 3(5“5V”<a§wﬁﬁ) oV (alaup T asVia Sonin T €y Vo Eayii)

1 . . . .
+ §(Eaﬁ5agv“ P&+ €apears VE 3 T Ean sV EBusi + Earay V! ”fgug,;))

x VIBTixd (C.11)
Again, e, VAV = VAV 3¢ = 0, £,V VTIYS = V7, V7ix® and

VI VIR = VIV + [V, VIR
=0+ (R* ™ML, + R® Y M) R
_ R/Bdwdgxﬁ
= (70N BT, 4P (%87, + 64,07 ) )Y

= B X7+ 37y (C.12)

75



Again, plugging this back into the expression above,

Vi (gﬁvﬂﬁ)vﬁﬁvvﬂxa

1 .
_ . . 4 Bhrovy
= <V<a(a£mw + 5 (2as V" aEopsg) + amv“(dgﬁm)) VAVIY

1 o
+ g(Ev%Xﬁ + 3 FXV oy

1 . . o .
+5(EasV i+ €ar VI Eonan) (E"7 X7 + 3877 FXT)

1 s
=V . . - \V4 . \V4 . vﬁ,@v —&
( (a(agﬁ'Y),B’Y) 3 (504/3 M(dgfy,uﬁ"y) Cay M(agﬁ,uﬁ’y))) ,Y’YX

2 .
o Bopas Vs (€77)X (C.13)

1 . : .
By B . =a
38 Ve Sanas X T g

3
As before,
far V" &anin) VI VX = 0s V183 VI VR
= 2as V" o &in) VIV + 0s V" 06,00 [V VIR (C14)
€a5V A [V, Vﬁﬁ] Vﬁ(a@mw [VW,VQB]XQ
_ VB i R Buv M, + RWQB””MW)X""
ERIWRYN eV
_ v " €5y (07 CriBes 4 B EY G
+ 67, (e Gy hB gaﬁgm)p);@
=V’ 4o O R (C.15)
Thus finally,

g 2 S| i
Va7V = (V(Mdfﬁw)m)+§5aﬁw(d5wm))vﬁﬁvwx +§Vﬁ(a5aﬁm)0 T

2 - .
o Bopas Vs (E77X (C.16)

1 : : :
By B L —d
ok dv(a gﬁv)ﬁﬁx + 9

3
Next, another term of v*V,D® W which could lead to two derivatives on ¥ is
VVa((€V aa My + €V 0o M 5, ) @)
— [ 0 (Ua)aa] va((gﬁwévﬁﬁ'Mw + gﬁﬂ'iw%vﬁﬂ']:w’yﬂ)l/}q)
(a®)> 0 Va((fBWBVBBMW + gﬁﬂwvﬁng)xa)
Vaa (€7 55(8% X+ 0%%4))
vaa@ngvgB(gaku + Eauthy))

Va (§’Ba’8’yvﬂﬁXv)
V"‘ (5 Bvﬁvﬁﬂ@%)
(€
(

1
2

Va ﬁaﬁ'y) ,BX +§ﬁ vaavﬁﬁXW
va £, ﬂwﬁ) ﬁﬂ¢ + £, ByByadyy ﬂ@%

Basy CEAvaaty
_ o (56 B )VIBBX'V + iiffggﬁ'yv Vv X (017)
V (5 7 ) [3,8¢ —€ 5 vagﬂv'y'ywom
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which has two terms with two derivatives on W. The only other term of v*V,D®W¥ which
could lead to two derivatives on W is

a ad _ [ (Ua)aa (gﬁﬁv ¢a>
AVt = ot 70 [T >]
_ va gﬁﬁvﬁg)()

VO‘ éﬁﬂvﬂﬁwa)

v
N

(
(
ac (é‘ﬁﬂ)v >—<a+§ﬁ vaavgg
oo (fﬁﬂ) 55¢a+£ﬁﬂvwvwwa
a(&”

_ V )Vﬂﬁ')_(d +£Bé[vo@avﬁﬁ']>_{d (018)
_vaoc (£BB)V53% + £Bﬁ[vaa’ vﬁﬁ,]wa ’

which does not actually have any terms with two derivatives on W.

Collating the results of the last few pages,

~'V,D? W
2 T | e
_ . . . BB o B ¢ | pobig
= Kvwafﬁww + Cap (gvﬂ(a@m) + %m))v VX" + 3V (68apan € X
1 : 3 2
+§ Eﬁwav(aﬁgm)/ﬁ + 2 5 Eaﬁaﬂ W(gﬂvﬁv)x + gﬁvﬂv[vamv V ]

+ Vaa (%) 3575 + Vaa (€ V5530 + €7 [Vaa, Vsl X® + Vaa (€M 5 3% + €X%),

. ) B2 (a S ~ . &
(V(a(agm)m) 4 B (gv( ﬂgﬁv)w _ gaﬁw))vﬁﬁ.vwwa + —V( BSBV) Bcaﬁwwt

+ ;Ea gﬂvﬁv Vo + gEaﬁaﬁv (gﬁvﬁv)¢ + gﬂvﬁv[vaa VMVVVWJ
. A . : . . T
+ VOV gty + VOUEP)V ggtba + €[V, V gl tha + VO (ED Mpythe + Etba)
(C.19)

The terms with two derivatives (the maximum) cannot be simplified further (at least in terms
of reducing the number of derivatives) since the coefficients of V//V7Ix* and V4,V 51, are

symmetric in &, 8 & 4 and «a, B & v respectively (thereby preventing the creation of V,sY%
or V%), like terms).
Since W is an arbitrary solutions of y*V,¥ = 0, the ony way 7°V,D®W¥ can equal zero is if

2
Via(abpyis) T Eas <§vu(d€w6*y) + gvdﬁﬁ) =0 and
N 4 N
v(@(E&ghnBY) | 6B (§V( ufﬁv)w ¢ BW) =0. (C.20)

However, V (4a§ )3 is symmetric in o and 8 while the ¢,4 term is antisymmetric in those
indices. Hence, they must vanish individually. Applying a similar logic to the other equation
as well, it follows that

0= V(a dfﬁv by = 0= v(a(dgﬁv)l?‘y)

A (@ caBpy)
3v Syupi) T ey = €7 = VB £ and

0= 2 gb’v)w gaﬁw — gaﬁwd :2

(@ ¢py)ap 21
v Ve g (C.21)
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By lemma the 1st equation implies faﬁdﬁ is conformal Killing.
Thus, so far, I have shown that the only 2nd order higher symmetry candidate is

2 & ra BB AT ad
5V IV 0o M 5+ €24V s

+ € Mg + €M g5+ € (C.22)

y D o s
D® — gaﬂaﬁvadvﬁﬁ + gv( Bﬁﬁvm'gvaaMm i

for a conformal Killing tensor, faﬁdg.

Next, as I did in section , I will fix the remaining components, £%¢, £*# ¢%% and &, by
ensuring that D'@W = 32D W upon a Weyl transformation, ¢/, = e“e,™

By lemma , f’o‘ﬁw =(1- 20)50‘50"3 under an infinitesimal Weyl transformation. Each term
in D® must have a net conformal Weigh of zero for D W to have the same conformal weight
as ¥, namely 3/2. By equation , Vs has a conformal weight of 1. The Lorentz generators
are unchanged under a Weyl transformation. .

Therefore, £*¢ has a net conformal weight of —1 and &%, ¢4 & ¢ all have a net conformal
weight of 0. .

All four tensors must be constructed out of %% and tensors constructed fully out of the
vierbien. Furthermore, on physical groundsﬂ each coefficient can have at most one factor of
faﬁaﬁ no products or contractions of £ are allowed.

Since all the Riemann tensor descendants have conformal weight, —2, the only possible expres-
sion for £*% is AV 33677, for some constant, A.

For &, 1 can have two covariant derivatives to compensate for £2#%%’s —2 conformal weight or
a single Riemann tensor descendant. . .

Since ¢ is a scalar, the only possibility is § = BVaaV 56*7* +CE, 4,567 for some constants,
B and C.

The same logic as & applies for €28, except this time I have to create a different index structure
and ensure %% = ¢ On the surface it would seem that I have four possible terms to work

with, VI, V_;69%8 v _ V@ ene8 7 v c08s and E(O‘m Bgﬁmﬁ. However,
vav(adfﬁ)wﬁ
= V(a.v .gﬂ)vdﬂ + [V B> v(a.]gﬁ)vdﬁ
:V v fﬁwﬁ—l—(R (o IW\M +R aW )gﬁwﬁ

_ eByas _ v .(a Nl eBuas _ op BB
=V deﬁ . R"/B o u£ R“/B o ug 2R75 o ug ‘
_ v(adv7855)7015 _ (560_[07(06/3)” _ 5(047Eﬂ)u5_d + EBd(_é(ﬁvéa L~ g(ﬂa)g’yu)F)g;wa,B

_ (%.dcy(alwlu _ 5(a E|“f| o T 55@(_5775(% _ gv(agw)p)gﬁ)udl?
— 2(_5(0476«3 @ 4 esa B, (a(a, 5(a7(_5(d55du _ 5(dd53ﬂ)p)55)75)ﬂ
B viC AV gﬂ vap o ple 55)7045 (C.23)

'Tf, upon a Weyl transformation, a tensor, 7', transforms as T’ = noT + other terms, then T is said to have
a conformal weight of n.

2By physical grounds I mean the previously discussed interpretation of /™ = 2™ +£™(z) as an infinitesimal
conformal isometry.
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Therefore, contributions from V_ BV(Q dfﬁ)w‘ﬁ can be absorbed into contributions from V(ade 656 yrap
and E* . £9748 Likewise,
Y&

V.V gopas A goBap
_ _vwﬁ,vvd gaﬂdﬁ
—> 2V, V00 = [V, V]P0
= (R "My + R My )67

=— Rvdwﬂaﬂgﬁ)uaﬁ _ Rw@ﬁ(aﬂ gaBi
= —(é?dBC’YW(Ofu + 577E(auo‘z3 + %B(_gv(agw _ 6(a76|7|u)F)§B)MB
_ (5“/76’%(@# + gdﬂ-E’Yy(dﬂ + 577(_5(%86# _ 5(dﬁ-€ap)F)€a65)”
— VI,V 560000 = g P )
and thus Vvavygfaﬂ 8 can be absorbed into E(O‘vdggﬂ)mﬁ t00.

Hence, it suffices to let £ = DV(adVWBEfB)V‘j‘B + GEO‘WBSB)WB for some constants, D and G.

Similarly, gdﬁ = Hva(dvﬁﬁgaﬁﬁ’)ﬁ + [Eaﬁﬁ(dgaﬁﬁ)"" for some constants, H and I.
With these results, so far I have

aBéf 2 @ A 2 & o BBA v aBéf
D@ =¢ 8 Bv‘mvﬁﬁ + §V( Bgﬁ'y) vajwﬂ7 + gvﬁ( ¢ Bﬂv)vam +AVBB(§ B 6)Vm
+(DV',V 567 4GB €997) My

+ (Hva(dvmgaﬁﬁl)ﬁ + [Eam(dfamw)]\_/[aﬁ' + BvadVﬁB(faﬁdB) + CEa,BaﬁfaﬁdB
(C.25)

and I have to find A, B, C, D, G, H and I from the Weyl transformation of D@ W. I shall
embark on that task by evaluating the Weyl transformations term by term.

1aBéB! / /
£ Vaavﬂg‘l'.
= (1= 20)""((1 4 0)Vaa + V'4(0) Moy + V" Mas ) (1 + 0)V 5 + V7 (0) M5,

V(0 5) ((1 + ga> q:)

_ gaﬁdﬁvadvﬁﬁm _ 20£aﬁdﬁvadvﬂﬁm + faﬂdﬁ.’gvadvﬂgqf + éaﬁdﬂvvd(U>Ma7(vﬁﬂ"P)

+ €Y I (0) M 45(V 35 ) + £V 140V 5, 0) + Saﬁwvw(vpﬁ(a)MB”q’)
- A 3 L
afaf R aBap .
+ €0V aa(V 5 (0) Mg, U) + 579V 06V 55 (o)
3 aBéf 1 apap
- (1 + §a>5 POV aaV gp W + 58NV (0)(epa V¥ + 65,V )
aBaf 1 apfap
+ £V (0)V s Moy ¥ + 3¢ POV (0) (4 Vi ¥ + 245 V5a D)
+ ETY I (0)V 35 Man ® + E°7V 04 (0)V 58 + €99V (V7 (0) M, )

aBéf ) AT 3 aBof aBof
+ PV (VS (0) M 5,0) + 3¢ PV 06V 55(0) W + 364740V 46 (0)V 55 W (C.26)
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glﬂ'yﬁ’y v/ v/ \I’/

88 Yy
- <1 " 20) fﬁvﬁ"‘rvﬁng\y + 5£ﬁwﬁ'7vﬁﬁ.(0)vw\y + gﬁvﬁ'ﬁvu () V3 M, ¥

+€Bwﬁ'&v u»( )VWMW\IH%W”V (VH ()M, \II)—I—fﬁw”’V (v io)M 1)

+ ggﬂvﬁﬁvﬁﬂvw(g)\p (C.27)
SV (0)V s My W + €77V (0) V.5 M 5, ®

V()T Mt

Lﬂ%@vvﬁ Mo )vaﬁuX ]
1 [€9519" (o) w@aﬁwwﬁ)]
2 | &7V (0) V(6 “5Xi 0% X3)

(0) s + €Y 5 (0) Vs
3 ( )Y WXﬁ‘i‘gmﬁvvﬁ (0)V43X5

IV (VP (0) Moy ®) + €779V 5 (V. (0) M 5 0)

_ FWW(W () Moy >]
VAN 45V (0) M3k

1 i ’Y/B’Y
(C.28)

EQ

2 gﬁvavv o

(o)

gﬁvﬁwv VH. (o)

_gﬂwﬁv 85 vq{ (o)
()
7

5( (Ear¥u + Eapthy))
( (
_gﬁaﬁvvﬁﬁ(vW
(
4
(

5QWXM + 5 ,I.LX'Y))
o)y) + £B’YBWV55( a»-y(a)%)]

DN | —

DO | —

gﬁvﬁav 55 \V4 g) >+§6vﬁvvﬂﬁ( vd(g);ﬁ)

[ VP (0)V s _i_éfﬁvﬂvvaﬁ.(g) Vst _i_éﬂaﬁﬁvﬁﬁvv&(aw +£6“’57V55Va7( ),
éﬂvavvﬁ o)

~

| —

VX + gﬁvﬂﬁvﬁd(a)vv;&g + fﬁwdvgﬁvﬁ(a»ﬁ + gﬂvﬁvv V()X
(C.29)

Putting these expressions back,
1BYBIT T
13 \Y% 3 ﬁV,w\Il

= (1 - 50) §7IY 3V W + 565V (o) Vs W+ 5607V 5V 05 (0) W
. . 1 .
+ {gavﬁvvﬁg(g)vwwﬂ + éﬁvﬂ'yvaﬂ.(a)vwwﬁ + §£ﬁaﬁvvﬂgvv#(0)wy
1 -
+ 5&"W”V,@3Vm(a)w
o S 1, 4 .
IV (0)V5%5 + 67TV (0) Vs + 56770V 5V (0035

T

1 54 .
+ 556%87V55V7a(0)>_<‘y (C.30)

VI = (14 0)V, + 97 (0) M, + V()M 4,)((1 — 20)5))
=(1-— U)V(aggﬁv)dﬁ _ Qv(ag(g) eANas 4 vug(g) Mle ghnas
+ VO ()M 5, £5)48 C.31
By
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o ¢1py)eB _ (1 _ (@ ¢By)aB _ (e BY)&B | TxTH (aB¢ 7)ap (B coy)ap
\V4 Bf =(1-0)V B{ 2V B(U)f + 2V B(G)(E fﬂ +0 uf

+ g(avgﬁ)#aﬁ + 5(’Yufﬁa)aﬁ) + §V(a7(0,) (5043557)#3 4 60{&557)5‘5

= (1= 0) Vg% — 3V (0)¢" (C.32)
V) = (14 0)V ;. + V1 (0) My, + V(o) M )((1 — 20)£55)
& ¢ & afBB5 1 & o 34 «a 3
=(1- g)vﬁ( £oBBY) _ Qvﬁ( (o) €88 4+ §V7( (0)(5 ﬁgvﬁﬁv) +6 7gﬁﬁﬂv)
. o B 1 . &b 0B A . s

+ @y £a53ﬂ) + 5% faﬁﬁ'a))

= (1 - o)V, 3V, (5)ged) (C.33)

— (V’(ﬁ'_yglvu)ﬁﬁvfgﬁMw + V'ﬂ/(ﬁf’ﬂﬂﬂ) V%BMW)‘F
= (1= o)V, 5 — 390, ()W) (1 + )V 5 + V7 (0) My, + V" (0) M 35) Mo,
(1= 0) 9,067 — 3V, P06 )(1 4 0)V 35+ V4 0)May + ¥, (0) T 5,) W)

<((1+30) )

= (1 + 50) (v(ﬁﬁ@u)ﬁvvaw + vv(ﬁgﬁwu)vﬁﬁ.Mw)q, _ 3(V(ﬁﬁ(0)fw“)MV53Mw
+ V., (o) M)W + (VE, WYY (0) M, M,
+ V., PN (0) M g, M) @

3 . .
+ §(V(5y€w)mvm(0)Mvu + VTN 5 (0) M, ) O

3 > : . —
= (1 + 50) (V%g”ﬂ)ﬁ’YVﬁBMw + V,y(ﬁf’BW“)VﬂBMW)‘I/
+ [ - 3V(5¢(0’)€”“”“V55Mwwa + V(Bﬁfvu)mvy/g(U)MﬁuMwwa

3 35

+ §V(’875W)’87V55(0)Mw¢a,

_ 3V7(5 (o) £ovi) vﬂﬁﬂﬁﬂxd + vv(ﬁ £ovn) Vﬂfj (U)Mgpﬂﬁp)_(d
3. — 0"

+ §V7(ﬁ£ﬁvw)vﬁﬁ(0)]\/[wx

3 .. Y _
— <1 + 50‘) (V(ﬁf_ygvu)ﬁvvaw + Vﬂ/(ﬁgﬂwu) VﬁBMW)‘I’
+ [ = 320, VS (@) yip, + VO, 0MIVY () Mg, (Eapitt)
3 .
+ _Ea#v(ﬁﬁgvu)ﬂvvﬁﬁ.(g)zﬁw

2
T

@ 34 < & ¢ BB VNS o 3O (BB <
— 3V7( (0)5’8757)V65Xy + V«,( Sﬁvﬁv)vﬁ (0)M g, x5 + §V7( SBVﬁV)Vgg'(U)Xﬁ
(C.34)
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(V,(ﬂﬁ éffw)ﬁ"'vvfﬂ SMoy + V/V(B ¢/87ii) V/B BMW)‘I’/

2

v(cv $6v) Bv (U)]Eﬂvwv -3V (.(U)fm MVB (CR 3V 7557)57 VA (o)
V gﬂvﬁV)V (o) M g, X5 — 3V (g)gﬂ%@v)v 85Xy + 3V gﬁvﬁv Vs(0)Xs

3 .. . _
= <1 + _0> (V(ﬁ&gu)ﬁvvﬁﬁ.]\/[w + Vy(ﬁfﬁwu)vgng)‘I’

3 . . _
_ <1 4 50) (V 6&57“)57V65Mw + Vy‘ﬁﬁﬁ””“)vgng)‘I’

_|_

%v(c,(éigm)@wﬂa)(eﬁ% +87,4%) — 3V(?7 (0)E3)3: V707 + 3V ’stm iV @)

3V gﬂyfh)vﬁu(a)(%[g)—(ﬂ +ewXg) —3Vs (U)fﬁ'ym gpXy T ng fﬁ'ym Visa(0)X4
3 » Y —

— (1 + 50) (v(ﬁﬁfvu)ﬁvvﬂBMW + Vv(ﬁﬁﬁw“)VBBMw)\I’

2V 557 ,BWV/B (o)y” — 3V(oﬂ(‘7)£ﬁy vﬁﬁdﬂ

a — e} (035)
2V, K EVNY (o) %5 — BV, ()65 VasXs

V/W (glﬁwﬁﬁ)vggq,/
= (14 0) Vs + V5 (0) My £+ V() M) (1 = 20)6777)(1 4 )V 5

+ V(o) Mg, + V5" (0) M 3,) ((1 + %0) \II)

2
+ V4 (0) M (€77)V 35® + V5 (€99)V ,(0) M, W + V5 (€799)V 7 (0) M 3,0

v

= (1 + —cr) Vs (§77)V 550 — 2V (0)E7PIV 4 W 4+ V" () M, (§777)V 5,

V(€)Y 5(0)

_ (1 + %0) Vo (€PN 550 — 2V (0)6PPV W + ng(gﬂw)vﬁﬂ-(a)qz
+ %(V“&(U)((S'Bvﬁﬂm + 55ﬂ£ﬁ75# + 5%56“5# + 5vugﬁvﬁﬁ>
+ Vi (0)( 559 e 5ﬂ'ﬂ AT fﬂvﬁ'ﬂ +67, gﬂw&ﬁ))qu,

VW’"Y (gﬁyé'y)vug (O-)M,Buqvba]
Vo5 (7P V 7 (o) M g, X

3 . . 3 34
1+ 50) Vi€V g5 = 6V35(0)¢M7V @ + SV (8771 V g (0) @

Vo (677 V (o) (apths + artis)
Vi (gﬁw&)vﬁy (o) <5d5' Xv + 5d1>>_63>

1+ 50) Vs (§77)V 550 — 6V (0)67P 1V 4, W + §VW(SMM)V@3‘(U)‘I’

Vs (EPPNV s (0)bs — VI (E, 5. )V (0)s

! - . 7 . C.36
V€5 ) VIR — V(€9 53(0)5 (C.36)
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From above, V;ﬂf’ﬂ”dﬁ =(1—- U)V,YB{M"“B — GVWB(J)@WB. Therefore,
a ot ¢1f)vas
v deg& ’y . .
= (1 + o)V + V4 (0) M@, + V(o) M a3) (1 — 0) V36777 — 6V _;(0)6P%7)
- v »mﬁw VI, ()74 — 6V, (o) - 6V (o) V1, e
+ V“a(“) : Vw'fﬂhdﬁ + V(“”(J)Mdﬂvwfﬁ)“’dﬁ
= VOV 59—V ()Y P 6V Y (0)ea - 6V 5(0) V@47
1

+ §V“d(0) (5(°‘B)V73§MW’H + 5(BMVWB£Q)7d5)

1, . : o :
+ 5 V(@) (0% V47" + VO (0)3% v 5677)
= VOV 5609 2V (0)V_ 5797 — 6V V_s(0)EP798 — 6V _4(0)V 6P (C.37)
Likewise, V/'%{’O‘BB;Y =(1—- U)V@ﬁgo‘ﬁm — 6V5A-Y(U)§a53*Y and thus
V/a(dvfﬁgaﬁﬁ)ﬁ
= (14 0)V, @ + V(o) Moy, + V() M) (1 = 0)V 356277 — 6V 5 (0)£77))
= V9V "7 = V4 (0) V536 = 6V, 0V 54 (0) €577 — 6V 35(0) V(562777
+ vu(d(g)vamgaﬂﬁ)ﬁ + Vallw)ﬂ(dﬂvﬁgaﬁﬁ)ﬁ
= V9V "7 = V4 (0) V5567 = 6V, 0V 54 (0) €577 — 6V 35 (0) V(52777
1_ . . N
+ —V“(“(U)(5O‘ V&P +6%,V35,797)
+ v SO) POV, 4 60,V ps28007)
= Va(avb’#gaﬁﬁ -2V, “(U)Vﬁﬁﬁo‘w” — 6V, OV 5 (0)E99)T — 6V 55 (0)V, (465 . (C.38)
Combining some of these results,

(DV'Y V! €My, + HV' OV ¢ORRT )0

ﬁ Y
3 (8 By (8 BYNE N
=1+ 50 (DV vaé May + HV 5" Vo€ M)

D(VY (0) V5% 43V V5 (0)651 4 3V ,5 (0) V' ,99) M 10
H(V,(0) V.77 4 3V, ﬂvm )EPVi 4 3V, (0)V P EVI M 5. 1

3 . ~ I
- (1 + 50) (DVY Vs &9 My, + HV V60 5, )0

-9 D(V(aﬁ((j)v éﬁ )8 + 3V VW(U)iﬂ)Wﬁv +3V7 ‘(U)V 55)757)¢6 ] (C.39)
H(V,\(0)V,565P +3v V. (0)E917 4 3V (0) V5 <0‘5W g
1 1
B o = 5(0)oa(0)55( Rop = g
1

= 5()aa(0) 55 ((1 +20) Ry + 1y V() + 2V, V4 (o)

1 P S
— Z_Lnab(l + 20’)R — §nabV VC(U)>

1 .
= (1+20)E, 555 — ~€ap€apV" ' Vo3(0) + Vaa V(o) (C.40)
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5/7 quMB + IE 35/57’7)#]\7%)\1,/

1 3 127 3
€507, V"V 0 (0) + V5V, P (0)

IN(1+20)F 57# +4

((z)w)

(B emupy
(1+ U) GE #B‘Yf Mg, + 1
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 [69 Va5 6,
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3 o
- (1 " 50) (GEY 3, €7 My, 4 1By, €N 5,) @

B .
il VW(UKW-BMI (C.41)
IV 5 Vo5 (0)€7 x4

V0 V€750 = (14 0)Vaa + V4(0) Moy + V,7(0) M)

X (1= 0)V 3367 — 6V 5 (0)€)

- vadvﬁﬁ'gaﬁw - Vaa(U)V,BgﬁaﬁdB + VWQ(U)MMVM&BQB
+ VI (0) My V%% — 6VaaV 55(0)E47Y — 6V 45(0) Va7

= Vaa V000 V4 (0)V 5650 4 %vvd(a)(csaavwgﬁﬁ + 0%V 56,557
+ Y, (0)(0%,V 4607 4 6%,V 3562 7) — 6V,aV 45(0)€2057
— 6V 54(0) Ve 294

= VaaV 558 — 10V04(0)V 5627 — 6V 06V 55(0)6*74 (C.42)

/ 108G 1 .
Bl = (14 20) B = 20080V 1025(0) 4 VsV 5(0))
x (1 — 20)€294%)
Eaﬁdﬁfaﬁdﬂ + Vadvﬂﬁ'(d)faﬂdﬁ (C.43)
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Finally, putting together equations [C.25] [C.30] [C.35], [C.36], [C.39] [C.41], [C.42] and [C.43]

3 y
DOV = <1 + —0> D)W + (5 = 6A)"IV 44(0) V. U

2
3 6B+ C) eIV V(o) + (22 Z10B) V., BN (o)W
+ 57 + § 88 W(U) + o v (€ gplo

. . 1 .
- {gﬂvﬁﬁ-<a>vw¢ﬁ + €Y, 5(0) Vs + 560V 5V, (o),
1 5 4 _ .
+ §§Bw'yvﬁﬁ'va‘y(0)wv + gv(awgﬁy)mvﬁﬁ(aﬁw - 2V( ( )fm Vﬁﬁl/ﬂ
A Y A_ . : :
t+ 5 Vi (67 0 5(0) s — 5 V7 (60 5) VP (0)105 - 2DV [ (0) V€, 508
+ (G = 6D)V V7 (0)85),5507 = 6DV (0)V (7550,
o o R S, o
gﬁvavvﬁﬁ(g)vwxg + gﬁvﬁvvﬁa(a)vwxﬁ. + 55675 Vﬁ,gvﬂ(a)m

L g5 Gf N\ 4o (apBv85 < o 34 <
+ §§B~/3'yvﬁﬁ.v7 (U)X7 + _vﬁ/( 55757)V55(0)Xa, _ vi( (U)gﬁwﬂv)vﬁ/j)ﬁ

A4 A . a ) <
+ 5 VT Ei) VI 0)X = V(€7 )V 55(0)%" = 21V, (0) V56775
. T
+ (] - 6H)V,3 w( )gﬁvﬁ - GHVW( )vﬁ(afﬁ’ymv)_([a . (C~44)

Some further simplification is possible using equation [3.25

(E773(0) + €7V 4(0) Vst = 2V, (06,35 7707
vﬁﬁ( )gavﬁv +V, ( )6575'*7 - 2V(aﬁ(g>5ﬁv)5#)vwwﬁ

—~

%(%av” (0)€,55 + 269V (0)E iy + 208V (0)E 5+ €0y VI (0)E 5,5 VT
= % VB(U)fﬁvgﬁVOﬂwB since Vﬁwﬂg =0
= 26 (0 Vst
= LIV 5(0) Vot since Vst = Vst (C.45)

Completely analogously,
(gﬁvd#vﬁﬁ(a) + gﬁvﬁﬁvﬂd(g))vwxg - va(d(a)gﬁvﬁﬁ)vﬁﬂ.;@
= (V5 ()0 + V3 (0)6"7 = 29,4 (0)" ) Vi3
= g(gb’avﬁﬂ((j)éﬁwv + gﬁvvﬁﬂ(g)fﬁwu + gaﬁvﬁﬂ(a)fﬁwv + EMVW(U)fM’B”)Vw)_(g

1 o

1 34 —d
= gémmvgg(a)vwx (C.46)
BB BYBINT . b — gl . BB .
(€77V5 5 (0) + €77V (5(0)) Vasths — 2V, (0)€5,55 VYT | 1gﬁvmvm(g)vwlll.

(€71V(0) + €V 4 0) Vs X5 — 295 () 35 ] 3
(C.47)
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1 50 1 >
_gﬁaﬂvvmvvﬂ_{(a)ﬂ}v + §£ﬁvﬁvvmvw(a)¢v

= L 605 TPIV(0) + €54, V5T (0) )

2
_ V(QBVW(U)%)WMW (C.48)
%Sﬁwdvmvﬁ(@)—ﬁ + %5M%V¢;5Vya(0)>_<ﬁ
= %SMMVWV/;B(U)T(B + %fﬂwﬁvwvﬂd(a)ig
= V,“V.5(0) PPy (C.49)
VPNV 0505 — 5T i) VP ()0
= V6V + SV )V 0
— AV aﬁ(g)vw(gﬁ Vmwﬁ (C.50)
V(€ VX — SV (€)Y (0%
= AV L@V + SV €Y, ),
= AV, (0)V3EP7%, (C.51)
VH0)V (o €yt
= (V 26 + %gvav(uggﬁ)#ﬁw + %gwﬂv(aﬁ.gu)uﬁw) V(o)
_ v(aﬁgﬁwﬁvﬁﬁ'(aww g Ve, Vo) - %V TR IO
= VG VO 4 39T 07 (C52)
Vi ( U)Vﬁ(a b
_ (Vﬁ(dfmgw N %ﬁav Ggd) %ng b0 )VW(U)%
- vv(agﬁvﬁﬁ)vw(a) _ —V vgﬁvﬂ ( )X — —V 75/3704 v 5( X5
(C.53)

= vy(dfﬂvw)vﬁﬁ'(a)XW + gvﬁ (U)wa #78) 7)_6

Putting the past few results back into equation

1 34
DOy — (1 4 ;0) DO 4+ (EG — 6A>£5757V/36~(0)VW‘I’

+ (g — 6B+ C)¢HV V(o) + (% —10B) Vo ()Y 55(0) ®
4 . .
" {<§ B 6D> Via €y V(@7 4 (4 = AD)V P (0) 97y 5507
+(1+ G~ 6D)V, V7 (0)85 5507,

4 o _ o -
(5 — 6H> VPN (o)X + (A — 4H)V5( (0)V5£777%5
N T
+(1+1 - 6H)V, Vo5 (o), (C.54)
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Therefore, D'@W’ = (1 + O')D )W if and only if 16/3 — 64 = 0, 3/2 — 6B + C = 0,
3A/2—-10B=0,4/3—6D=0,A—4D=0,1+G—-6D =0,4/3—6H =0, A—4H =0 and
1+1—-6H =0.

That is, D'@W¥' = (14 30)D@W if and only if A =8/9, B =2/15, C = —7/10, D = 2/9,
G=1/3, H=2/9 and [ =1/3.

Then, by equation [C.25] the only candidate for a 2nd order symmetry of the Dirac operator is

aBéf 2 (a &f 2 & o885 Vi 8 aBaf
D®) = gof Bvade + gv( Béﬁv) ﬁvade + gvﬂ( ¢ 'BBV)VaaMB& + §V,BB(€ POV o
2 1
B)yap (a B)yép
—|—(9V o Va6 +3E Bf >Ma5
2 1 7 s

e app (a aBB)y apBap . caBaf

+ (9V VB é " + 3E g >M + — Vaavﬁﬁ(g ) - E aﬁdﬂg .
(C.55)
I can now continue simplifying equation |C.19)
1 1 2 34\ <&
V“VQD(Q)‘I’ — {gvﬁ(dgaﬂﬁ’y C«aﬁ“/u ot 3E/377 v ﬂgﬁ’y ,6’7 & 4 §Eaﬁa6v7*/(€ﬁvﬁv)x

+ &V aa, Vs Vs X 4 Vaal €V 55% + Vaal€7)V 5%

+ &% [Vaa, Vsl X* + Vaal€ W\_%J(d +EXY),

1 «a & 1 «a 2 aBa

gv( Bfﬂv) 'BCaﬁ«mW + gE v gﬂvﬁw Vo + 9E Ba 'BV (fﬂvﬂwwj

+ EPPIVOY Y VA e + VOUELP)V 510, + VOV 55000

. . . T
+EP VOV gl + VO (ET Mgy + E¢0a)
/
[;lf,a] say, (C.56)

but with o876 gaaby cac ¢aB B and ¢ all determined. Since D and ¥ both have complete
symmetry between dotted and undotted indices, if I simplify the first two components of

equation - or ¢, as I have called them - to get the first two components of equation [C.2]
then it automatically follows that the second two components of equation -or X4 as I
have called them - simplify to the second two components of equation [C.2]

Therefore, I will continue the proof only fOIE| Yl

fﬂvﬁv[vam AV S
= €7V 35 (Vg Vos X + €77V, Vg Vs X
= PV g4(Roos MysX®) + U R " My + R M) Vs X
= fﬁwm(vg,@'(Raawwiu) + Radﬁmuvmx +R 5 VwX + Radmd’lvwﬂu)
= fmm(vﬁg((%wcm + 5MEMM + 5a7<5ua5af'y + 5%5&@) )X1)
+ (adBCam“ + SaBEw#dB + edﬁ(—ewd“ﬁ — 0 ey ) F)V 1 X
+ (CapClpy + EdBEaMM +eap(—0"6E gy — 0" 3864 F) VX"
+ (2apC 5™+ €agBag™ + cas(8%0" 5 + 856" ) F)V15X,) (C.57)

3Really, I could have focused on just two components right from the start, rather than carrying all four
components. However, I have chosen to be pedantic in waiting until I have explicitly shown that D® has full
symmetry between dotted and undotted indices.
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91V, Vs Vs X
= PPV (Boas X)) — 3¢ _.VBB<F—d)+567.ﬁC MY XY EBPE Y L8
BB a'ya’yX afBapf X & afy N’YX a B &8 ’Y’YX
_ BBy a BYE A xd g By g od uBBoa
Capast’V ‘X + &7 WCQB& VX" + 878 " Epps VauX™ — Sapapt VIIX

+ fﬁﬂyaﬁEaﬁdﬁvv‘yT(B - 35aﬂa5FvW>_<B

= &7V g5(Banas )X + €777 W_Ecwcwvmid - 3§a5(_mvﬂ P(F)X® = 8upapF VX"
+ gﬁﬁd’YCaﬂvuvu’yxrx + faﬁﬁ’yEﬁ’YdB v’y’w—(a + ga’yﬂ’ycd[%uv’m%a

+ 87, By VX + € E V5% (C.58)
555 [V aa, Vﬁ[—}]f(d _ gﬁﬁRad,BB#VMﬂf’Xd
_ BB dng.
- 5 Rad,BB XM

- _V’Y"Y(fﬂ’YBPY)EaBo}BXQ - _vﬂﬁ(gaﬁdﬁ.)an (059)

3
Vaal (€7 Mg, + OX) = Vaa €75 + €%)
= 5d5vad7<6 + Vaa(édg)fég +V
= 6%V aaXy + Vaal€)%5 + VaalOX* (C.60)
Putting the past few results back into equation
Vo = %Vﬁ(afaﬁﬁﬁ)adﬁlw% + %Eﬁwav(aﬂ"fﬂv)éﬂd + gEaﬁaBVw(fﬁ R
+ €Y 5(Banad) X + €77 Eanas V gg X = 38,055V (F)X* = 86,50 F VPR
+ €000 VX + ETE ) VXt 6T, IR+ VX
B 5%+ Va0V 55 + Vaa €)W 35X + SV (€ B X
_ng@wwﬂwd+@%uﬂﬁ+vmgwng+vm@md
= %Vﬁ(afaﬁgﬁ)éd[jw?—(ﬂ + %Eﬁwa v(aﬁggy)gﬁ_(d + % aga,évw (567%75“
+ €Y (B X + 2677 By V 55X = 36505 V7 (F)X® = 88,505 VX
+ €005 Vi X+ EPPE) VX + €T IV xS + € E 0 MV X
8

+ Vaal €V X5 + Vaal€7)V55X" = 3V (€09 X + € VaaXs

+ Vaa (€)X + Vaal©X (C.61)

Exactly as I did in the other long calculations in my thesis, I will proceed by removing/simplifying
terms without a curvature factor on them.

Vaa(fﬁdm)vg[ﬂ_ﬁ = Vad (ggam)vﬁﬁ.)_(&

. 5 o1 . 5y
= Va0 VX + 5208V €4, VX (C.62)

yapy

88



ad (gﬁﬁ)vﬁﬂ)_(a

Vaal€P)V 3538 = V
VOW (553)Vﬁﬁ>_<;y

1 1 -
Vs t 5508V 58 + 5855V (o o
1 ; -
- fagawvwm)) vy
1
(v(a 1€0)5) T+ 58V gw))vﬂﬂ T as VX1 =0 (C.63)
£V aaX s = saﬁgmvﬁﬁx& (C.64)
Together,
Vaa (") V 3535 + Vaa (7)) VX" + € VaaX;5
o' 1 & 1 5
= <V<a $oraps T Viatitas) +Eas <§V” (&aps) T 5V ) + 'Sm) > VIR, (C63)
thus collating all terms in equation with a derivative on Y, but no curvature factor.

1. 1
5V (& ags) T 5V 5€us) + €5

= =5V 'V & T GV VY Cnma — gV (Ve — 3BT s Ein
1w 2 s (I
= =gV Gia) + gV VT 6ma — BT s una (C.66)

[Vﬂga Vyd]ﬁwﬁd
= ( R“W”M )+ T%“ TP M )i
= R” th Vﬁuma + RM e Vfwva + RM e Vfwua + RM o ngw
_ (_(Wﬁ'owvy 5WE ”~a 5%, (5“ V’Y—I'_(S,‘/’y M)V F) s
+ (=690, a’V“E 5 = 00T+ ) )
+ (57“6’ a v 5a E*” v 5”‘(8@ - 51}'5@)}7)57#1901

+ (gyucﬁ.ady _ 5046 ELWdV + 5’7M<Eﬂ 5V 5@ ) )g’YM"W
— _opeé vam)d (C.67)
Thel"efOl"e, [Vu(ﬂ7 ]gfy,u'y _2E7Ha(ﬁ 5’7#’}/ and

1 1
5V Eap) + 5V 58 T €5

B _%VWV“(B@W@) + ngvu(ﬁfvm)d B gEWd(Bf’Y’”)d‘ (C.68)
vau(gfw#)d
= V”dvu(ﬁfw‘yd) 1 aﬁvvavﬂ fww)u + 15a7vwvlﬁ éhwu)ﬂ
= V”dV“(nyma) + évfy[ngéw‘vd + évwﬁvwéwﬁd
= VIV (Ewie) + %V“ AR
= %W(ﬁwam) + %ww@»m + 655 = —E™ s Gua (C.69)
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Next consider V(adfﬁ)dgﬁ + V(a(ﬁgﬁ),@)'
V"€ + Viati€ay
= —§V<JV%€W@> + ngwdfﬂwﬁ')a
= %V(adwwfﬁma) + ngvwwfﬁma + S[Vmw VL (C.70)
VI*Va6snna
=V (+8p)pa) T 1€vav V(u(vg y 1576V “V(a 75 g

1 1 1
e N, . TP vACA v S VAL o
+ 58V V(i€ ) +35aﬁv Vm(vfﬁw)m +95W5MV Vi) )

1 4 1 1 .
+ §5mﬁfaﬁv7 Vi "755 "t 957ﬁ5a7v Y a(uf "+ 95%38045V "Viats #)up)u

gvvv agﬁ,y Bd +

Vozﬁv fﬁwa +

- EV v gﬂ%@a) + = 6

_va.vvd .
+36 g fW“% 36

1_ | |

. ax7Y . I wai « . _ o . .
=3V Vi T 3V Ve onpa T 9V7 Viatspa
= Vi $papy T Vietdp)

Vﬂ V&) + —VV-V o Epryic

6

VQ,YVV’O%OWB@ 36 vﬁﬁv fayya

1 .

1 4 1 N .
= —3Va Vioa + 3V 6V e T Vet V)00 (C.72)
V7V i
(3 ¥ (e SBy)B)a

1 - 1 .
— 77 e’ Y o H Y & n
= V'V Sopia §EWV 6V ) pra _E%BV GV ' pa

1
—5MV7WV

= V'V Eonia + 3

. 1 . 1 .
1 vy e u e .
(aafﬁ) B) t 35aﬁv V(@ 55)7;‘0 - gvaﬁw Sovia

- gvﬁ(vv f

& & 1 & 1 &
= V" Via€aie T [V Ve lapia) + 5V Viarbapsa T 5V Viasboria

ayB)a

1 (o4
- gv(aww 56)76)0'4

& & 1 &
= V" Vi8ania + Vi Vo lapia) + 3 VL GEaira — 3V @Y Eappa

3
e & 1 &
=V V€0 TV 60 Via lEs180) = 5[V Vg0 (C.73)
& 1 4 8 N
- v(a fﬁ)dﬁ‘ﬁ + v(a(*ffﬁ)[?) = g[vywy V(a ]55)7[3@) + §[V(a(:y, v ]55)’75)@ (074)

[Vas, Vg 54
( R, 'ya/w M,, + R 'ya/w ;w) fﬁvﬂa
- Raﬁvaﬁu pba T avwavugﬁuﬁa T R " ﬂgﬂwd T Ra&mdﬂgﬁvﬁﬂ
= (=6%C, " — 6T, Bt — 6% (gaﬁw — "0 F)E, aa
+ (_5%0&77# o mocEvuﬁa — 0% <50¢75M o Mocmw)F)gBqu
+(=07,C. %) = 6% B, “f.“ 070 (245" = 8",0%) F)éprpa
+ (=07, C 0 = 0% B = 07, (eqae™ — 6".6% ) F)ég (C.75)
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[va% vw]fﬁy,éa
= =Cog™Cny = B3 Cana + Flappy = B3 Eorpa + 3F&apy = O Cooga = B, e
+ Fégasp — B aéﬂvm +3F8s0p
= =Cog ™ py — C'a' fﬁaﬂ‘i - Eﬁvﬁagavﬂa E, afﬁvﬁa - Eavﬂ'dgﬁm'y
— B i + 8FE 55 (C.76)
= [v(a(‘w ]55)75)01 = _Caﬂw By Cygd;yufaﬁaﬂ - 4E(a7(5'dgﬁ)w)d + 8F§a55ﬁ (C-77)
[Vv[;a Vad]fﬁfya«y
= (R, My + B " M s )6
= Rv ¢ Mfwm + Rv ¢ Mgﬂuav + R ¢ Mfﬁwv + R 5ad,yugﬁvau
(B A B 5 )P
+(=0%C7 1 + 67, E “.O‘ — 6%5(=07,0", + €ar€) F)ppas
+ (07 é o — 0% E b 7 (e - 5ﬂ55da)F)fﬁwﬁ
+ (67,C, 0‘7“ (5” E7, “—1—57 (g5 _(5“'6&')F)£B’Ydﬂ
—Coag™ € s+ By anar + Féogps + B Enan +3FEops — B0 %004
= 3F¢usp;+Cy " Saﬁdﬂ = B3 0 — Féassy
= O i — Cog™ i B iy — B 500 (©.78)
= [V B’V(a ]fﬂ)my

= 1 1 & 1 4
- CB‘ "Eapap — Caﬂwgwﬂﬁ +35 9 5 5 favav + 2E 75 ey — 2Ea7'y v
1
v @ ,
B §EB o favdﬂ
= C fa,@au aﬂ’Yﬂg’w‘B&/ + QE(B’Ywafa)w]a (C79)
Vs,V ]gﬁvﬁ'v

= (R0 My + B30 M s)es. 5,
= R0 " Gy + Baa™ Coupn T B % Covin + Baa”s €0
= (0% " + 010 Bty — 0% (=8750", + eape™ ) F)E, 45
+ (= an o S B — 50 (=87 0" 4 Eare ) F)E g
+ (07,00 = 0GB P 8 (eg58™ = 0748%) F)éprig
C

+ (67, — 0 E” bt 67 (Eage™ — 674 6% ) F) s 5
= =200 5 — 2E 7'0665“/‘5"'7 = 2B, 05+ 8FCopps
= —2C,,™¢,, 5, — 4E 7 agm +8FE, 45 (C.80)

= [V, Vi ls)ps = —2C05™"

= [v7(57 V(ad]gﬁ)’ﬂiﬂl’)

iy 4E 7 O‘fg )G +8F§aﬁﬁw (C.81)
_ Aoan T v oG ) T )

- _(20 35 faﬁdﬂ =205 " gy T 2E B 18 Sayrita + 2E( B Iy 5 vBlé 2005 " Sty

- 4E gﬁ)’Y’Y)OC + 8F§aﬂ/5’y)

- _(zcsﬁaufaﬁdﬂ —4Cas " Sy — A 5 Sarvma + 8FEag5) (C.82)
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Putting the results for [VV(B, V(a‘j‘]fg)wm and [V (a(3, V%€, 44 Dack into equation [C.74}

Vi €spapy T Via:€s))

1, Gl e’
= (205, Capap — 4057 ups — 4B " Epra T 8FEqg55)

9 By
8 Qi K
+ 5(_00457“57#5# o CB A‘yugo‘ﬁd"‘ 4E 7 5ﬁ yi)a T 8F5a5ﬂ'y)
4 &
= _gcﬁv éaﬁd[‘ - gcaﬂ’yug'yuﬁ'y 4E ’y 56 )Y SFéaﬁB’y : (C83)

The only other terms in equation|C.61{without a curvature factor are Vad(fdﬁ )X and Vaa ()X

Voa(§*)X5 + Vaa(&)X®
2 ] :
_ BB ) B B
= (— §Va VGV iy 3V (B aEa01) + 5Vaavﬁﬁv 5 (67%)
7

Vadvﬂngéﬁvﬂﬁ

— Vﬁngvwgﬁvﬁﬁ + [Vaa, vaw]fﬁvﬁﬁ

= VPV 1V aibgrpy + Vsl Vaa Vaslé7 + [Vas, V 5] Vs 8P7 (C.85)
[Vaa, Vw]gﬁvﬁﬁ

= (Rao'w"tuMHV + Rad'ywuVM )fﬁ%ﬁ’y

- _ RmW . gmﬁv me ugﬁuﬁv me Hfﬁwv wa #55%3#

—(earC,. " + 5ME6 + a5 (=07 60 — 0 Wsa“) )8”67

oy p
— (ea5C,," ! + 5ME7 + a5 (=07 8 — 5'775%)}7)55/‘57
- (Ea'yéa'y L + €anya,y L + ga,y( 5/8@8:”1 — 5ﬁﬁ€dﬂ)F)f’B’yuﬂ.{
- (ea’ycay [t + €a'yEa7 [ + 5047( 51-,48;”1 — 5775(&#)17)637/3#

= _Caﬂwg 'ﬂ + Emo'dgcwm + Fgaﬂaﬂ - Eavo'zﬁfmm + 3F€aﬁaﬂ - C’aﬁwfﬂaw

Ypé
Ea'ymfma"y + Fﬁaﬂaé - Eavdﬁgﬁvgﬁ + 3F§aﬁa3 (C.86)
Therefore,
V5V, Vos €07
= VI =Cop "€z = C o Comiic = 257 iy = 250 iy + 8FEape)  (C87)
[Vos: Vsl Vs
= (Rad,@ 'WMAW + E & 'WM‘ ) .gﬁvﬁ'ﬁ

= — aaﬂﬁ i wgwﬁv aam . ngw
= _(adﬁoaﬁ .t gaﬁE eap(—0° e — 5B58a#)F)VW£W*

(Eaﬁc + €a5Ea6 i T Eap(— 5ﬂa58ﬂ _ 565564;1)F)VW€57M
— _2E“/a7dV56§mm+6FV §aﬁd6~ (C.88)
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VIV Va5

b 1 b 1 3
— BB . - BB . - BB .
= VIV Viaads)ig + 5808V VIV (&g + 320y VIEVTIVE (855

3

1 . . . 1 . ) . 1 : . .
+ ggdﬁ.vﬁﬁvwv(augﬁw)m + gedﬁvﬁﬁvwv(aufﬁv)m + §€aﬂgdﬁ.vﬁﬁvwvuu€mw

1 : . .
+ ~EarEsh \VLLA vkl vuugﬁﬂw

1 : . .
+ §€a6€c‘wVB5 \val ngwfﬁﬁ 5

1 . . .
+ § EarEary VB,B \vashv/ gﬂuﬁ'ﬂ

1 fons 1 pie s 1 N 1 -
_ iy b B ¢ 88 4 8 be 85 .
=3 Vo VIV (68 T 3V V V 0€ayi0) T 3V e VTV (0 Eayas + VIV IV Eg0) 5
1 o 1 5 . 1 g
VAN Al vy Big 4 1B Be
1 5
+ §v65vadegﬂvﬁv
_ EV Ehvall vz - gvﬁ vy, Be. o4 gv VL 88T lv CAVARR VLTI
—3Va @sspn T3V a (@ Somps T gVaaVesVaid g Va ViaV 85

+ %V’Bavaﬁvwfwﬁ T é[vw, Vaﬁ]vﬁ(afﬁvﬁw) + %WW, Vﬁdw(a%ﬁw)m
+ 51V 53 Vel V51 (C89)
(V7 VIV iy
= (R My + R M)V (85, 5)
= BV (i) + BV 8y + BT SV
+ BV
— (5/3"707(”# +657 E’YM;YIB + 5/3#(_ 08", 4 ey, F)vﬂ(dé*ﬁ#m)
(6, 6«#3@# 4 P Evad/l + (;’ya(g'rd By 5Ba M) F)Vﬁ(pfﬁ%éw)
+ (0,0 J B P 0,076+ 67 )V )
+ (5, Cwﬁﬁ'ﬁﬂ 1P Evm/l 4 ma((g% ehb 4 5/3% ) F)Vﬁ(afﬂw[m)
= BV sy + 07V iy (C.90)
v, Vﬁd]v(afjgﬁv)ﬁ"y
= (R MM, + ]—%Wﬁdub]\_/[w)v(aﬁ' Earis
- ngc’vauv(u%ﬁv)ﬁﬁ + RWBaﬂHV(a'Béw>B~y + RWBM#V(aBgﬁu)B&
- Rwaﬁﬂvmﬁfﬁv)ﬁu
= (87,07 1+ PB4 67 (67,6 + €68V F)V Py s

+( 5&@ C%BBM 4 &P Eﬁwa + XY@( (575 chB 4 Y (5%) F)V(QB fuv)fi*f

+( (ﬁd C«vﬁvu 4P Eyma + 5&@(57W ehb 5#7567> F)V(QB 5@)5"’/

+ (PO 8 B+ P (=600 + €”BEM)FW(QB§M)B¢
- Caﬁwv(uﬁgﬁv)dﬁ + Evﬁ&/@v(aﬁgﬁv)ﬁﬁ (C.91)
(V3 Vaa] V3 EP7PY = ZEVO;YdV’gBé‘ﬁVM - 6FV’BB§aBdB from earlier. (C.92)
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Putting the results of the last two pages together,

vaﬂﬁ,vw 55%5’&
= ;Vf.vwv/j(afﬁw + ;vﬂdev(aﬁ%m + ;Vaavmvwé‘”‘” + %vaﬁvvdvﬂvgﬁm
+ évﬁdvjwﬁ'gﬂm + %(EQWVB i T 0V i) + %(Caﬁ " s
+ B, v(aggﬂv #) T %(QEVO[&O_( Vﬁﬁgﬁvﬁﬁ - GFvﬁﬁfaﬁdﬂ') + Vﬁﬁ.(_caﬁw THdf3
—C ;" Capyp — 2B aﬁafﬁ)m = 2" :8yips + 8F6agag)
zE7 1V s+ GFVE (C.93)
— Vaavgg‘vw gﬁ'yﬁw
_ gv vavﬁ i T gvﬁ V"/’Yv ﬁ’fﬂv + ;V Aval V*B'ngm—l— 7Vﬁ \Y VVWBfmm
- g(Eanﬁ(dgﬁW) + édﬁwvﬁ(ugaﬁm)) + ?(Caﬁwvwﬁfﬁw)aﬁ' + Ewav(aﬁfﬁwm)
- gvﬁﬁ(caﬁw Y + C’ uéaﬁw + 2E 5@757 + 2E ' gﬁvﬁ)v 8F§aﬁd5)
176 B VP, L8 FV B pa (C.94)
VIV )
e A AA O S wN VIV s é%vaewwﬁufﬁwﬂ
_ VQBVWV% gww _ évaﬂvvdvﬁw €5y — gvanvde Egvivy
_ Vaﬁvvﬁvﬁ(dgmﬁ,w _ %Vaﬁvﬁ(defﬁw')ﬁ
B gvaﬁ'vﬁ(degﬁvﬁh = VLI 0V
_ ;vaﬁ'vﬁ(dvﬂgﬂﬁw — V(R My, + B ML) )
2

= VSV GV 05 = Vo (RO Gy + BT Sy + B o

BB Y B
+R(a vfﬁvﬂ )

2 ; ;
( 57 C«,B'y moy ngE u ’Y 57 (55’y€M’Y + 5%5#,3) )fﬁuﬁ')ﬁ
(5750@73)# _ 5'7(@ EB’YB)H + gvﬂ( £(ah) ey 5#@ 515)) F)ayis

+ (gvﬁc(dﬁ;yﬂ _ (ﬁmEﬁW,yﬂ + 575(—5&(0‘45’” _ 511(&5#7)}7)55“/5)#)

1yB)

- %V“Bvﬁﬁvw%ﬁw +2V, (B 165 (C.95)
VaVIV 65y

SRR % cap VP TTIVE % e VP TV

_ VLY, évwvwvﬂﬁ' Eis — évﬁdvaﬁvvﬁ' €0

= gvﬂdvaﬁ'vﬂgﬁm - %vadvvﬁvﬂﬁgﬁm + V2V VO e (C.96)
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Putting together the past page of results,

Vﬁdev(asfﬁw)m
— %vaﬂ'vﬂ(dvﬂgww + % x %(o — 2B s+ 6FVE 00) + gEaﬁdvagﬁvﬁﬁ
_ vaﬁ/ifaﬂdﬁ. + 2v6a<E(a7M§5)ym)
N gvaﬁvﬂ(degﬁvm 2V (B ) - (C.101)
Vaﬁvwavmfﬁvm
- Vaﬁ.vﬁavwfmﬁﬁ
= VIV s+ %%Bvaﬁvﬁ’l NARI
= Vo VGV 6+ %vaﬁﬁvvﬁmm (C.102)
V%VJV”BSMM
- Vﬁavanggﬁvm

= VoV VT s+ [V Vo IV 6
: . 1 : . .
= vaﬁvﬁ(degﬁmﬁ + §ed5vaﬂvﬁﬂvwgﬁm +0 from above
) ) 1 .
= VIV GV 505 1 5 Vaa Vg5 Vs (C.103)
Then, plugging equations [C.95] [C.101], [C.102] and [C.103] into [C.94
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Therefore,
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v Bhe

Then, using this expression in equation results in
ad fdﬁ)TCB + Vao'z(g)_a
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Finally, putting equations [C.106] [C.83], [C.69 and [C.65 into equation gives
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thereby completing the task of removing curvature-less terms from /. This expression still
needs to to be simplified a lot to look like the 1st two components of equation Collecting

97



like terms in the last equation,
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i.e. {1} and {0} are a collection coefficients not involving the Weyl tensor. Since V4 X5 =0,
{1} can be symmetrised between and & and . Thus,
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That leaves only {0} to simplify.
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Hence,
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Substituting this result and the earlier result, {1} = 0, into equation |C.108]
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This expression can be re-written as
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which are the 1st two components of equation [C.2] Hence, by the aforementioned symmetry
between dotted and undotted indices, the equation relating the 2nd two components of equation
also holds true - thereby completing the proof.
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Appendix D

A primer on spinors

Given the emphasis on spinors in my thesis, I thought it best to include a general mathematical
overview of them “from first principles.” My presentation here is a collation of results in [24],
[25], [26] and [27][] My only contributions are some details of proofs omitted in [26] and [27].
For this appendix alone, rather than the specific case of 3 space and 1 time dimension, I will
work in D-dimensional spacetime with s space and ¢ time dimensions. I will also break the
convention of presenting four-component spinors in boldface.

D.1 Arbitrary spacetimes

The study of spinors is intimately connected with the representation theory of “Clifford alge-
bras.” A Clifford algebra is a set of D objects (which can be thought of as matrices as only
their representations in finite dimensional vector spaces are relevan, {7}, such that

Ve, W} = YaW + WY¥e = —20a01 (D.1)

where 7,, = diag(—1,--- —1,1,---1) with ¢ minus ones, s plus ones and s+t = D.

The first task is to study finite dimensional, complex, irreducible representations of this al-
gebra. As I will show, for questions such as the existence, uniqueness and dimension of the
irreducible representations, it suffices to study the algebra, {v,, 7%} = 2041 .

Let {3a, 9} = —2nwpl, Yo =1Fa fort <a <D —1land vy, =7, for 0 <a <t-—1.

Then, for a,b > t,

YoV + WY¥a = ol + iT61Ya = —(FaVo + VoVa) = 20apd = 20a1 . (D.2)
Likewise, for a,b < t,
Ya¥o + W Va = Yoo + VoVa = —20apd = 2041 . (D.3)
Finally, when one of a and b is less than ¢ and the other is greater than or equal to t,
Yoo + WYa = 1(Fa¥o + WVa) = —2inap] = 0= 2541 . (D.4)

Therefore, the original Clifford algebra can be transformed to one where —n,, — d4. Con-
versely, if {74, 7} = 201, then letting 5, = 7, for 0 < a < t—1and 4, = —iy, fort <a < D-1
yields {:Ytza :Yb} = _27]abI-

'T have taken some proofs almost exactly as presented in these references.
2The Clifford algebra must be assumed to be associative for a matrix representation to be well defined.
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Since the two Clifford algebras are equivalent, for now consider {74, 7} = 20a1.

Let {7,}2°)} be a finite dimensional, complex, irreducible representation of the Clifford al-
gebra, {V4, 7} = 2041. Denote the dimension of the representation space by N.

Let {FA}iD:f)l = {1, Ya, Yoo With a < b, v,y With a <b < c¢,-+ ;7 - -vyp_1}. By definition,
all the I'y are N x N matrices.

VoV +WYa = 200! = (72)* = I and 73 = —W7a for a # b. Thus,

(Ta)® = Yay " VYanYay =" Ya, for some 0 <n < D—1anda; <--- < a,

= f}/alfyal(_l)nilfyaz “YanYas " Van

= <_1)n_1’7a2 “YanYaz T Van
_ (_1)n—1+n—2+~~-+1[

= (1) 05)
Hence, all the I'4 are invertible and (I'y)~' = (—1)"("=D/2D .
Lemma D.1. G = {j:FA}QADgol is a finite group of order 2P under multiplication.

Proof. That G has 2P*! elements follows directly from the definition.

Matrix multiplication is already associative.

The identity matrix, I, is I'g by definition and hence in G.

(£04)7! = £(=1)"=D2T, € G.

All that is left to show is that multiplication is a well defined binary operation on G.

Let I'a = Ya, **Yam a0d I'p =%, -, = Tal'B = Ya; " Yam Vor =+ Vou-

If a; # b; Vi, j, then changing the order of the 7, and v, (at the expense of some —1 factors)
to make the sequence in ascending order of indices means I'4/I'g € G. If a, = b; for some ¢
and j, then changing the order to make them adjacent means 74,75, = I and those two s are
removed. This can be done until no a; and b; are equal.

Therefore, ['4['5 € G again = The binary operation is well defined. O

{74} } is irreducible <= there is no subspace of CV invariant under all ~,.

As {7.}25 € G, the elements of G also have no common invariant subspace.

Hence the irreducible representation of the Clifford algebra automatically leads to an irre-
ducible representation of G in the same representation space.

Theorem D.2. The dimension of an irreducible representation’s representation space, N, can
only be 2P/

Proof. Let Y be an arbitrary N x N matrix and let

2b_1

S= (Ta)'YTa4. (D.6)

A=0

where I have adopted the convention of explicitly showing all summations on the A, B, ...
indices. Then,

2D 1 2b_1
(Cp)'STp = > (Ip) (Ta)'YTulp = > (Tal'p) ' YTul'5. (D.7)
A=0 A=0
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I'pl'y € G and as ['p is invertible, I'y, I'p = £'4,I'p = T'4, = £[4,.
Thus, {FAFB}il):Bl = {j:FC}QCZ:)l where on the RHS, a + or — is chosen for each C' depending
on whether I'yI'p = T'c or '4I'p = —T'¢ (hence {:I:FC}éD:Bl has only half as many elements as

the group, G). That means the equation above can be simplified to

(Tp)~'STp = i (D) 'Y (£I¢) = i (Te) YTe=S. (D.8)
C=0 C=0

Therefore, ST'g =I'gS VB.
Hence, S = A for some A € C by Schur’s lemma. That means

2P -1
A=Y (T4) YT,
A=0
2P 1
= tr(\) = tr( Z (PA)—1YFA>
A=0
2P —1 2P—1
= AN =Y tr((Ta)'YTs) = Y tr(Ta(Ta)'Y) = 2"tx(Y)
A=0 A=0
b1
2Dtr(Y) 2Dtr(Y) A _1
= A="F" = —5 I=Y) (Ta)'YTa4. (D.9)
A=0
In the last equation,
2Py, 2D
LHS = Tkk(sl = W(Skléijykl and (DlO)
2D 1
RHS = > (I3 )iYu(Ta)y; (D.11)
A=0
Then, since Y}, is arbitrary,
9D 2P 1
LHS = RHS — Wfsklfsij = Z (F;}l)ik(FA)lj
A=0
9D 2P 1
= iy = > (Tl
A=0
2P —1
= 2 =" tr(Ta)tr((Ta) ™). (D.12)
A=0

Let T4 = 74, *** Ya, forsome 1 <n < D—1 (any I'4 other than 'y = I and T'on_; =70+ Yyp_1
can be written in such a form by definition).
Therefore, 3b € {0,1,--- , D — 1} such that b # a; Vi. Then, if n is odd,

(,Yb)_ll—‘A’Yb = VYa1 " Yan Vb
- (7(7)2(_1)71/7(11 Yap
= (=1)"Ta
=—-I'y asmnisodd. (D.13)
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Therefore,
tr((%)_lf‘A'yb) = tl"(—FA) < tl"(FA) = tr(—I‘A) - tl"(FA) =0. (D14)
On the other hand, if n is even,

(7(11)711—‘147(11 = Ya1Ya1 " YanYaa
= 7a1/7a17a1(_1)n_1’7a2 “Yay,
= (_1>n_17a1  Yap

=—I'4 asniseven. (D.15)

Hence, tr(I'4) = 0 by the same logic as before.
Then, in equation [D.12] the only non-traceless matrices in the sum are when A = 0 and when
A =2P — 1. Thus,

2P = te(Dtr(I7Y) +tr(vo - - yp-0)tr((v0 - - 7yp-1) )
= N?+tr(y0 - yp-0)tr((vo - vp-1) 7). (D.16)

It will now be necessary to consider D even and odd separately; I will start with the former.

tr(yo---vp-1) = tr(yp-170 " - - Yp-2)

= tr( - -1 (=177
=tr(—y - -yp_1) as D is even (D.17)
= tr(y---vp-1) =0
— 2P = N2
— N =202 = glD/2] (D.18)

However, when D is odd,

YaY0 " YD-1 = Va0 " Ya—1YaVa+1 " VD-1
=% Ya-1%a(=1)"YaYar1 -+ - YD1
=% Ya-1%a(=1)"Yat1 - Yp-17a(=1)7 77
= (-1)" 00174
=9 Yp-17%. as D is odd. (D.19)

Then, since all elements of G are products of the s and possibly a factor of —1,
9YVp-1="""Ip-19 Vg E€G.
Therefore, 7o - - - yp—1 = Al for some A € C\ {0} by Schur’s lemma (not the same A as before).
Thus,

2P = N2 + tr(Atr((AD) ™)

= N?+ (N)) (%)

= 2N?
— N =2(P-D/2 _9olD/2] (D.20)
Hence, for any dimension, D, N is uniquely determined to be 2L°/2. l

The previous theorem uniquely determines the representation space’s dimension, but as yet I
have said nothing about the number of inequivalent representations in C¥.
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Theorem D.3. For even dimensions, a finite dimensional, complex, irreducible representation
of the Clifford algebra is unique up to equivalence, where as in odd dimensions, there are two
imequivalent representations related by a factor of —1.

Proof. Let {7, }2= and {7,}2=; be two inequivalent, finite dimensional, complex irreducible
representations of the Clifford algebra. Let G and G be the two corresponding finite groups
generated as before. For an arbitrary N x N matrix, Y, this time let

2D 1
S=) (Ta)'YT4 (D.21)
A=0

2b_1

— (Ip)'STp =Y (Ip) " (Ta)'YTul's

5
n o

(TATB) YT Al

[
i

N}
o)
—

(Te) 'YTe

(]

o

" g

«— ST =T3S VB (D.22)

with the 3rd last line following by the same reasoning as equation Now, since the rep-
resentations of G & G are inequivalent, ST'g = I'gS = S = 0 by Schur’s 2nd lemma,
ie.

> (T3 wYu(Ta)y = 0. (D.23)

0="> Ty u(Ta)y (D.24)

=3 tr(Ta) (D). (D.25)

For even D, it was shown in the proof of theorem [D.2| that T’y = I is the only one of the I'4s
that is not traceless.

Hence, 0 = tr(I"")tr(I) = N2> = N = 0, contradicting theorem [D.2]

Therefore, for even dimensions, there could not have been two inequivalent representations to
begin with, thereby proving the 1st half of the theorem.

Meanwhile for odd D, it was shown in the proof of theorem that Do = J and Tp_q = A
are the only non-traceless I'4s. Hence,

0 = tr(I~Ytr(1) 4+ tr((A)~H)tr(N)

= A=-\. (D.26)
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Because of this result, there cannot be a 3rd inequivalent representation as follows.

Let {7.}2-! be a 3rd inequivalent representation. Then, considering the three representations
pairwise, A = —5\, N = —Xand N = —\. The 1st and 3rd of these equations together imply
N = X, which contradicts the 2nd equation.

There could yet be two inequivalent representations though. Let v, = —v,. Then,

YoV + AoVa = (—Ya) (=) + (=) (—Ya) = Yo + V6Va = 201 . (D.27)

Therefore, {7, }27 = {—7.}25 also satisfies the Clifford algebra.
Assume J an N x N matrix, C, such that 7, = C~14,C for a contradiction.

Yo+ Ap—1=C%C - Clyp_C
=C - paC
= C~I\IC
Y (D.28)

However, 5o+ Yp_1 = (—1)"70 -+ - yp-1 = —AL
That means A\ = —\I, which contradicts A # 0.
Hence, in odd dimensions, {7,}2} and {—v,}2-} are indeed inequivalent representations. [J

Having established these properties, it is time to return to the general Clifford algebra,

{Ya, W} = —2napI, where the previous two theorems will continue to hold via the reasons out-
lined earlier. Spinors can now be defined as the N-component objects of CV, the representation
space of the Clifford algebra. As I will outline, these spinors will allow representations of the
spin groups (the universal covering groups of SO'(s, t)).

From hereon, let 7o ---vp_1 be denoted by vp1.

Let A% € SO"(s,t) and let v, = (A%, 7, i.e. as if 7* was a Lorentz vector. Then,

Y+ W% = (A7) (AT (veva + vave)
= —20a(AT) 5 (AT I
= —2n4I by the defining properties of SO (s, ). (D.29)

Therefore {7/ }27! also satisfy the Clifford algebra.

In even dimensions, since the irreducible representation is unique, 35(A) such that

v, = S(A)"'9,S(A). However, in odd dimensions, both v/, = S(A)™14,S(A) and

v = S(A)"1(—=~4)S(A) could be possible by the previous theorem. Consider the latter case.
YD+1 =V " VYD-1 = %8“1'“@%1 "+ Yap by anticommutativity. Hence,

S(A) D S(A) = e G(A) Ty S(A) - S(A) My S(A)

N!
—1\P
— —( N') gal-"an)/;l U VZLD
(_1)D ai-ap -1 bl -1 bD
= E cman (a1, o (A1,
1P
_ =07 N!) det(A™)eb oy ey
= —vp41 as Dis odd and det(A™') =1. (D.30)

However, I showed earlier that in odd dimensions, ypy1 = Al for some complex A # 0. Thus,
the last equation says S(A)!AIS(A) = =\ <= A = —\[ <= ) = 0, which contradicts
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A # 0.

T}?éerefore, even in odd dimensions, 7, = S(A)~'4,S(A). Hence, in any dimension,
S(A) AT S (Ay)

= (AT)%(A2 ) 0%

((A2A1) ™)
S(A2A1) 1. S(AgAy)

S(A2)S(A1)S(AsAy) s (D31)

S(A1) 7 S(A2) e S(A2)S(Ay)

= 7aS(A2)S(A1)S(A2A) 7!

Since the last equation holds Va, gS(As)S(A1)S(AsA1)™t = S(A2)S(A1)S(AA) g Vg € G.
By Schur’s lemma, S(Ag)S(Al)S(AgAl)_l = f(AQ,Al)[ < S(Al)S(Ag) = f(Al,AQ)S(AlAg)
for some f(A1,As) € C.

Therefore, S is a projective representation of SO'(s, ).

In general, this is the best that can be done for SO'(s,t). However, since

S(A) "1y, S(A) = (AP v, is invariant under S(A) — BS(A) for any 8 € C\ {0}, S can be
extended to a representation of Spin(s,t), the universal covering group of SO'(s,t). In this
case, it can be shownﬂ S can be made into a linear representation, rather than only a projec-
tive representation. This property distinguishes the spinor representation from other tensor
representations; spinors facilitate a representation of Spin(s, ¢), not SO (s, t).

From henceforth, let S(A) = S(N) where N is a pre-image of A under the covering map.

A natural way to generate a representation of Spin(s,t), is to exponentiateﬁ elements of
spin(s,t). Since a group and its universal cover are locally isomorphic, spin(s,t) = o(s, t).
Hence, one must study the the connection between Lorentz groups and Clifford algebras at the
level of Lie algebras. To do so, let M, = —}1[%, 7). Then,

1
[Maln Mcd] = E[[’Yau ’7b]7 [fYCu ’Yd]]
=1 —[Ya Yo — Vo' Vas VeYa — Ve

1 1

—(YaM — MWYa) (VeVd — Vave) — 7= (VeVa — Yave) (YaVo — W Va)V

16 16
1
16 (’Va%%%l Ya Yo VdYe = Vo Ya Ve Vd T Vo VaVd Ve — Ve VdVa Vo T Ve Vd Vb Va

+ YdYeYa Vo — YaVe Vs Va) - (D.32)
Using the Clifford algebra,

YeVdVa Vo = —VeVaYd Vo — 2Mad Ve Vo
= YaYeVd Vo + 2NacVd Vo — 2Nad Ve Vb
= YV Yd — 2MdYaYe + 2NacVd Vb — 2Nad Ve Vo
= YaWVeYd + 2MbcVaYd — 2MbdVaYe + 2NacYd Vo — 2Nad Ve Vo
= VoW VVd — VeVaVaVs = 2(Mad Ve Vo — NacYd Vo + ModVaYe — MocVa'Vd) - (D.33)

YeYdVoYa = W VaYeVds VaVeVa Vo — VaVoVdVe A0 W YaVdVe — VaVe Vs Va follow by relabelling indices.

31 will sketch how this can be done below and in the next subsection of this appendix.
41 will have an example later in the appendix.

109



Substituting these expressions,

1
[Maba Mcd} = g(nad'-)/c’}/b — NacVd Vb + NodYaYe — MbcVYaVd

+ NeaYoYd — TebYaVd + NdaVe Vo — NdbVceVa
+ NavYaYe — Nda Vb Ve + NebYdYa — MNeaVd Vb
+ MoV Ya — ModVeVa + NacV6Vd = Nad Vb Ve)

1
= —(Nad[Ver W] + NaclVo, Ya) + MoalVar Ve + Moc[Vds Val)

4
- nadec - nachd + nbcMad - nbszzc . (D34)
In summary, M, = —[7a, V) satisfy the Lie algebra of 0(3,1), i.e. My, are Lorentz generators.

It is now time to study the effects of these transformation properties of the Clifford alge-
bra on the properties of spinors themselves. Spinors were originally used most prominently in
physics in the context of the Dirac equation,

(i7"Va — ¢7*Aa(z) = m)¥(2) = 0, (D.35)

where U is a 21P/2_component spinor. To be a well defined equation of motion, the Dirac
equation must transform covariantly.

That means under a local Lorentz transformation, €/,™(x) = (A™)? e,”(x), the Dirac equation
must be 0 = (i7*V/!, — ¢y*A! (r) — m)¥'(z). This equation still has 7%, not 7'*, because despite
appearances, v* are supposed to be a set of constant matrices; they cannot be different for
different observers.

Since V, = A® V, and A, = A’ A} the original Dirac equation can be re-written as

b

0= (17"V, — ¢7"Au(z) — m)¥ ()
= (A’ (iV; — qAy(x)) — m)¥(z). (D.36)

Earlier, I showed that 7/ = (A™1) v, = ~. = S(A)"17,S(A) for some group representation,
S(A). Let T(A) be the corresponding representation for contravariant indices,
ie. ¥ =A%~ = ' =T(A)"192T(A). Hence, the Dirac equation becomes

0= (T(A)"Y'T(A) iV}, — gAy(x)) — m) ()
=T(A) ™' (v (iV, — g4, (2)) = m)T(A) T ()
<~ 0= (iy"V, — Al (x) —m)T(AN)¥(z) . (D.37)

Therefore, it must be that U'(z) = T(A)¥(z). This defines the transformation property of
spinorg?]

If one restricts attention to special relativity, then the transformation of interest is 2’ = A% 2.
Then, the Dirac equation is 0 = (iy*0, — ¢y*Aq(z) — m)W¥(x) and the transformation property
required of spinors is W'(z') = T'(A)¥(z), or equivalently ¥'(z) = T(A)¥ (A~ x).

There are still many properties of spinors left to consider. For “calculation” purposes, it
will be useful to choose a basis in the spinor/representation space of the Clifford algebra. As
G is a finite group, 3 an inner product (that is unique up to scaling) invariant under the action
of the representation. Since scaling is arbitrary, any scaling of this unique inner product can

5Rather than take the Dirac equation as fundamental and derive spinors’ transformation properties from
there, a more mathematical perspective would be to define spinors to transform as ¥/ (z) = T(A)¥(x) and use
that to prove the Dirac equation transforms covariantly.
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be chosen. Then, choose a basis that is orthonormal with respect to this inner product.
In this basis, all 7, are unitary, i.e. 7} = (v,)7L.

HOWGVGY, Ya Vb + Vo Va = _277(16[ = (’Ya)Q = _naaI (HO Sum)'

Hence, (7,) ' =7, for0<a<t—1land (y,) ' = -y, fort <a<s+t—1.

Or equivalently, 7/ = v, for 0 <a<t—1landy = —y, fort <a<s+t—1.

Theorem D.4. Let A= oy -vi_1. Then, A is unitary and vi = (=1)"T1 Ay, AL
Proof. For 0 <a <t—1, 9 = (v4)™' = 7,. Then,
ATA = (70 "Yt—l)T(% S Y1)
= f)/i:‘l.—l .. f}/gfyo .. "thl

= (3-1) " (70) M0 e
=1 = A is unitary. (D.38)

For 0 <b<t—1, (15)"' =1 and hence A~ =, ;- 7.
Fort<a<s+t-—1,

(
= (=110 y1v-1 %
(

=7, (D.39)
For0<a<t-—1,

(1) Ay AT = (1) 0 YY1 0
— (_1 t_lr)/o Y 1Va V=1 Va0 (I]O Sum)
= (=10 e v (DT a0

= (_]- 2a7a

= ’Ya

=l (D.40)
Putting together all the cases, v/ = (—1)""1 Ay, A1 in general. O

To derive the next few results, restrict attention to the case of D being even.

()" ()" + (%) (F7)" = (YaW + 17%a)"
= (_2/’7CLbI)*
= —2nu] (D.41)

Therefore, {4*}2-! also satisfy the Clifford algebra.

Since the irreducible representation of the Clifford algebra is unique in even dimensions,
J matrices, B; and B,, such that v* = Bjy,(B1)™' and —y = Bov.(Bs)™'. These two
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equations can be wrapped together by saying v* = uBv,B~! where = +1. Here y and B
are taken to be interdependent, e.g. if u =1, then B = By while if y = —1, then B = Bs.

Yo =nBrBT = 7, =uB; B~
= uB*uBy,B~'B~*
= B*Bv,(B*B)™"
< ~,B*B =B"B~, Ya (D.42)
Then, by Schur’s lemma, B*B = vI for some v € C\ {0}.
But, BB* = vI as well since a matrix and its inverse commute.
Therefore, (BB*)* =v*] = B*B=v*] = vl =v*] = v € R\ {0}. Then,
BB* =vl = det(BB*) = det(vI)
— det(B)det(B*) = 2" det(I)
— *7" = |det(B)]?. (D.43)
For any k € C\ {0}, (kB)v,(kB)™! = By,B™! = 7%, i.e. B can be scaled without loss of
generality as its definition only relies on uBv,B~! = ~.
I will scale B so that |det(B)| = 1.
Therefore, 2" =1 and hence v = =+1.
Since 7, are unitary,
I =795 =7%00)" = vanB ™y, B
= I"= (B " B
= [ =B, BY)
=y, B~y B!
= 1*B,B~'B 14| B
= By,B7' BB
<= B 'y, =Bv,B !B
< 7,B'B=DB'By, V,. (D.44)
Then, by Schur’s lemma, BTB = pI for some p € C\ {0}. Hence, p = £1 by the exact same
reasoning by which v was constrained to be +1.
For any vector, v € C2””, v B'Bv = vfpIv = ||Bvl|? = p||v||2. Then, as ||Bv||?> > 0 and
llv]|* > 0, it must be that p > 0.
Thus, p can only equal 1, thereby making B unitary.

Theorem D.5. Let C = BTA. Then, C is unitary and v = (—=1)"puC~,C .

Proof. CTC = (BTA)Y'BTA = A'B*BTA = A" (BB')*A= ATA =1 = ( is unitary.
For the other part of the proof, applying theorem along the way,

T =0
— ((_1)t+lA,yaA—1)*
= (=)t A AT (D.45)
AT = (0 1)
=7 " Vi1
= uByB™' - uBy, 1B}
1
= W'BAB™! — A7 =—BA'B"! (D.46)
]
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Therefore,

_ _ 1 1
A = (1 BAB BB (B )

(- uBAy, AT B (D.47)
B*B=vl and BIB=1 = B*=vB' = B =vB". Thus,

Ya = (=) B Ay, AT B v
= (-1)"*Cy, 07t (D.48)

Consider the effect of B and C' on spinors in the context of the Dirac equation.

0= (17"Va — 7" Aq — m)¥
— 0= (—17"V,— ¢y A, —m)¥*
= (—iuBy*B 'V, — quBy*B~ A, — m)¥*
= B(—=1p7"Vo — quy*Aq — m)B~ 1"
< 0= (—ipy"V, — quy*Ay — m)B1U* (D.49)

If = —1, then B~1U* satisfies the same Dirac equation as ¥ but with ¢ — —q.

If 4 = —1, then B~1¥* describes the antiparticle of the particle described by W.

On the other hand, if 41 = 1, then B~1U* satisfies the same Dirac equation as ¥ but with both
g — —q and m — —m.

When 1 = —1, a particle is its own antiparticle if and only if B~10* = U «—= U* = BV,
Therefore, ¥ = (BY)* = B*U* = B*BU = vV — v =1.

Definition D.6. If u = —1, v = 1 and V* = BV, then V s called a Majorana spinor. If
p=1v=1and V" = BY, then V¥ is called a pseudo-Majorana spinor.

If v = —1 and one has two spinors, V;(i = 1,2), then one can impose an “SU(2) reality
condition,” W' = (U,)* = e BY;. In this case, the p = —1 and p = 1 cases are called SU(2)
Majorana and SU(2) pseudo-Majorana spinors respectively.

The matrix, C, can also be related to antiparticles as follows. From the Dirac equation,
0= ((1Y"Va — 7" Ay — m) W)’
= =iV, (1) (v")" = q¥T ()T A, — mT
= iV, (UN) (=1 Ay AT — (=) qUTAy* AT A, — mTT
= (—iVo(UTA)(—1) Ty — (1) T qUT Ay A, — mTT) AT, (D.50)

Let U'A = U; ¥ is called the adjoint spinor. With this notation,

0 — \Tj((_l)t-&-li,ya%a 4 (=1)"gy® A, +m)
= 0= ((=D)"(y")" Vo + (=1)"q(y*)" As + m)T"
= (=)= uCy OV, + (1) T g(=1) pCy*CH Ay 4 m) U7
= 0= (iuy"Vo+ quy* A, +m)C~ 10" (D.51)

Again, if 4 = —1, then C~'WUT describes the antiparticle of the particle described by W. For
this reason, C~'W” is denoted V¢ and C' is called the charge conjugation matrix. For reasons
unknown, B does not have a special name despite the similarity. It is however no coincidence
that B~'W* and C~'W¥7 serve the same purpose.

113



Theorem D.7. B~'U* and C~"UT are proportional to each other.

Proof. C-107 = (BT A) Y (WHA)T = A LB~ TATW* — A-1(AB-1)T "

A =75y = puByB - uBy, B! = f!BAB™' = AB~!' = /B'A*

Therefore, CT = pt AT AT BTy,

However, I showed earlier that B = vBT. Thus, B! =vBT <= BT =vB !since v? = 1.
Meanwhile, for the other two matrices,

ATTAT = (o Y1) (0 "Yltfl)T

=y

= ’ytfl o .. ’yo’yt—l PR ’yo
— (_1>t—1+t—2+~~~+1]

= (=1)tt=D/2g (D.52)
— C7UT =yt (1) D2 gy (D.53)
O

As it happens, v and u are not independent.

Theorem D.8. v is a function of u, t and s by

v = cos(%(s - t)) - usmG(s - t)) . (D.54)

Proof. 1 have already shown BT = vB. Then, using theorems and ,

(=) uCyea O (1) uCyC ™!

(_1)t(t_1)ﬂtc% 1% C'B

( )t(t 1)ut<—1)t 1+t—24-- +1C"YO""Yt—1cilB
= (- 1)t<3t+1 Pu'CAC™'B

(=1)

(=1)

(=1)

—1)t0/2 tyo (D.55)

Thus, B and C' may be symmetric or antisymmetric (independently). To see how this is
relevant, con81der the group, G, introduced earlier. In particular, consider the subset, {T’ A}QD_l.
Let ZA 0 C’AFA = 0 for some constants, C'y € C. Then,

2P 1
0= Culul'p (D.56)
A=0
2P 1
= 0= Y Catr(Tal'p). (D.57)
A=0

However, I showed earlier that I'4I'p = £I'¢ for some C' and tr(I'¢) = 0 unless I'c = I (in
even dimensions).

114



Hence, tr(l¢) #0 = I'p= (T4) ' =4Iy = A=B.
Therefore, the sum in collapses to Cg = 0.
As Bis arbitrary, {'4}%_," is a linearly independent set. The size of the set is 2P = 2P/2x20/2,
which is the dimension of the vector space of 2P/2 x 2P/2 matrices.
Thus, {T4}%_,' is a basis for the set of 2°/% x 2P/ matrices. This basis can be “antisym-
metrised” to {I'™}, where T'™ = v, - -+ 7,,], i.e. rather than 74, -7, with a; <as <+ <
a,, the indices are %ntisymmetrised. There areDD C, matrices of type, ~F(”). Furthermore, as C'
is invertible, {T'4}%_,' is a basis = {CTa}%_;' is a basis = {CT™} is a basis.
(€Tt = @)rer
(Var =+ Yau)) T (1) V2000

:7T ---'y:‘fﬂ(—l) =072t

(=D uCe, C 7 - (= 1) pCryay CH(=1) D2 C
= (1O (1) Dy ey

(_1)( 2+n+2nt—t+t2)/2ﬂn+tVc«f\(n) (D58)

The last equation means each of the CT™ is either symmetric or antisymmetric.
Since every matrix can be decomposed into symmetric and antisymmetric parts, the antisym-
metric CT'™ must form a basis for the antisymmetric 2°/2 x 2P/2 matrices.
However, the set of antisymmetric matrices is known to have dimension,
2D/2C _ ;QD/2<2D/2 _ 1)
2 — 3 .

That means there are 120/2(2P/2 — 1) antisymmetric CT™. To count the number of antisym-

metric CT™), note that there are PC,, matrices of type, CT™, and J(1—(—1)0*nt2nt=t+6)/2 ntt) —

0 for a symmetric CT™ and 1 for an antisymmetric CT™. Therefore,

D
1 1
52D/2(2D/2 . 1) _ Z 5(1 B (_1)(n2+n+2nt—t+t2)/2Mn+tV)DC«n
n=0
D
— 9D _ 2D/2 _ Z(l B (_1)(n2+n+2nt—t+t2)/QIun—i—tV)DCn
n=0
_ ZDO . Vﬂ t(t— 1)/2ZM n(n+2t+1)/2 DO
— 2D/2Mt( tt-1)/2 _ Z DC'n,u n (n42t+1)/2 ‘ (D.59)
At this point one might guess that
n(n+2t+1)/2 (_1)nt \:n . AN
(—1) = (L4 D)i"+ (1 —=1)(—1)"). (D.60)

2

Because of the periodicity in powers of 1 and i, this expression only needs to hold for n, ¢ mod
4, to hold in general. I have checked the equation really does hold for those 16 combinations
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on Mathematica. Hence,

2Pt (= 1) = 2N (=) (1 + D" + (1= )(=)")°C

= DS 1y - i),
= D (S -1y 20, —1 Y inl-1)) )
= %y(l D) (1 +ip(=1)HP —i(1 —ip(=1)HP). (D.61)

Since 1 4+ 1= v/2e¢"™* and 1 —i = v/2e7 /4 the last line can be re-written as
2D/2Mt<_1)t(t 1)/2 V\/_elﬂ'/42D/2( in(—1)tDmr/4 17F/2e*iu(*1)tD7r/4) : (D62)

which re-arranges to

\/§’ut(_1>t(t—1)/2

- oi7/4 (@i~ )" Dr /4 _ gin/2—in(~1) D4y °

(D.63)

Because of the periodicity of ™4 and (—1)7, it only matters whether u = 1 or —1 and what
s and t are modulo 8.
Therefore, there are only 2 x 8 x 8 = 128 different cases. Again, one may guess that

in/4(  ip(—1)tDm/4 _ i7r/2 —ip(=1)t!Dr/4
e ) = cos z(s —t) ] — psin z(s —t)]. (D.64)
V2pt(—1)Ht=D/2 1 1

To check that this equation really holds, one only needs to check the 128 different cases - a
task I have completed with the aid of Mathematica. Finally, v = +1 — v = % and thus

v =cos(§(s—1t)) — pusin(F(s —t)). O

Since equation [D.41] the discussion has been limited to even dimensions. It is now time to
extend the results to odd dimensions. Let D be even and let the odd dimension of interest be
D+ 1. If D = s+ t, assume without loss of generality that D +1 = (s + 1) + ¢, i.e. a space
dimension is added. Let ypi1 = v ---vp_1 as before. Then,

YD+1%a = Y0 " VYD-17a

=%V Yp-1% (nO sum)

=% YaYa" Y01 (=177

= (=)™ Ya Yoo (=177

= (=) avp1

= —%Yp+1 as D is even, (D.65)
< YD+1%a T VaVYD+1 = 0= _2na,DI . (D66)

Meanwhile, (yp+1)> =70 Yp-170 " YD-1
= (=17 (g0)2 - (ypa)?

)
1)D (D-1) /2( 1)51
)

)

1 D2 /24(s— /2_,

(—
(—
(—1)=9/21 (D.67)
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as D?/2 is even, (v,)? = I for timelike indices and (v,)? = —1I for spacelike indices.

Hence, {7V, Vp41 oy satisfies the Clifford algebra for s — ¢ = 2 (mod 4) and {7, iVp41 g
satisfies the Clifford algebra for s —¢ = 0 (mod 4) (s —t = 1,3 (mod 4) are not possible for
even D).

By theorems and [D.3] in odd dimensions, there are two inequivalent representations,
{Yas 1011} o0 & {7, —erl}%_o1 1aﬂd {%JVDH}QDZ_%I) 815 {—a: _17D+1}£)=_0[1) rlespeCtiVel}’-
Unlike the even case, {12,751} 20k & {72 1 1250 and {92, —i 1100 &

{—7z, 1vp.1 Y27 respectively are no longer equivalent.

Thus, in v = uBy,B~!, i can on longer be freely chosen as 1 or —1. Instead, p will be fixed
by forcing vp 4 = uBypy1 B~ or —1Vpy1 = nBiyp B~

First, consider 7}, = pBvypy1B~'. For that,

1Byp1 B~ =9h,,

= b
— uBvB™'- - uByp_ B~
= 1’ Byp B!
= Byp1B™! as D is even,
= pu=1. (D.68)

Hence, when s —t = 2 (mod 4), p = 1. Similarly, —iv},, = pBiyp1 B~ = p = —1 when
s—t =0 (mod 4). These two equations can be summarised in one equation, p = (—1)~t+2)/2,
To proceed, note that D + 1 odd, the irreducible representations still have dimension, 2°/2.
Therefore, {v,}27} can still be used to generate {I A}iif)l, which will still be a basis for
2D/2 % 2P/2 matrices. Furthermore, A’s properties only depend on ¢, not s. Likewise, in finding
v = +1 and and the other results, I only needed 2P/2 is even, not D is even. In fact, looking
back over the proofs, all the properties continue to hold. The only difference is y = (—1)(=#+2)/2
is fixed rather than free.

Thus far, I have written odd dimensions as D+ 1 = (s+ 1) +¢. To write odd D as s+¢, I will
have to let s — s — 1 in the theorems for odd dimensions. Overall, one gets the following.

Theorem D.9 (Summary of results). For D = s+t (D may be odd or even) and D > 1,
o 1= (=12 in odd dimensions.
e 1 can be freely chosen as 1 or —1 in even dimensions.

Y= (=1)" Ay, A7 where A =g Y1

3 a matriz, B, such that v = uBy,B™ .

V= (=1 puC~,C~" where C = BT A.

A, B and C are all unitary, B*B = vI forv = +1, BT = vB and CT = vpu!(—1)t-1/2C,

o v=cos(Z(s—t)) — psin(3(s —t)) in even dimensions.
o v=cos(5(s—t—1)) — psin(F(s — t — 1)) in odd dimensions.
Proof. See above. O

[ am now in a position to evaluate all possible combinations of v, y and s — ¢t (v and p only
depend on s — t).
For s —¢t = 1,3,5,7 (mod 8), s —t —1 = 0,2,4,6 (mod 8) and hence y = —1,1,—1,1 and
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v=-cos0+sin0 =1, cosm/2 +sinn/2 = —1, cosm + sinm = —1, cos37/2 + sin37/2 = 1.

In the even cases, p = +1 and s — ¢t =0,2,4,6 (mod 8) imply v = cos0 Fsin0 = 1,

cosm/2 Fsinm/2 = Fl, cosm Fsinm = —1, cos3n/2 Fsin3w/2 = £1. These results are
summarised in table [D.1l

H v ‘ 0 ‘ Possible s — ¢t mod 8 ‘ Antiparticle related spinor H

1 1 0,6, 7 pseudo-Majorana

1 ] -1 0,1, 2 Majorana

—-11] 1 2,3,4 SU(2) pseudo-Majorana
—11] -1 4,5, 6 SU(2) Majorana

Table D.1: The antiparticle related spinors possible in different spacetimes

Besides the suite of Majorana like spinors, another special type of spinor relevant to physics is
the so-called Weyl spinor. Weyl spinors are defined as eigenvectors of yp 1. However, I already
showed in equation that in odd dimensions vp 17, = VaYps1 Va

= Yp+19 = gY¥p+1 Vg € G = 7yp41 « I by Schur’s lemma.

Hence, in odd dimensions, every spinor is an eigenvector of yp,; and so the concept of a Weyl
spinor would be fruitless.

To accommodate for that, define Weyl spinors to exist only for even dimensional spacetimes.
Rather than vp,1 ¥ = AV however, it is more customaryﬂ to consider (—1)C0/4yp U = AT
with (—1)'/2 defined to be —i without loss of generahtyl

1 7D+1( 1)/

= (- ) Yp+1¥

= (1)~ “Yp-1% Y01V

— (—1) t/2( )D D=2t (N2 2
— (1) 02PNy
(1)t

— )= :i:(—l)(Sth) /4+(s—t)/2 (D69)

In even dimensions, s — ¢ is also even and thus (s+1)?/4+ (s —t)/2 is an integer => X\ = +1.
Eigenvectors with eigenvalues, +1 and —1, are called left handed Weyl spinors and right handed
Weyl spinors respectively.

Theorem D.10. The eigenspaces of left handed and right handed Weyl spinors both have
dimension, 2P/~ and hence their direct sum is the entire representation space.

Proof. In proving theorem , I showed that v = ~, for 0 < a <t —1 and ] = —~, for
t <a<s—+t—1. Therefore,

Vb1 VD41 = e b
(=1 (=11
" (D.70)

meaning %T:, 41 commutes with vp, 1, i.e. ypy1 is a “normal” operator and thus diagonalisable.
Hence, the sum of the dimensions of eigenspaces of A = 1 and A = —1 equals the dimension of

6With the benefit of hindsight, the eigenvalues are nicer with this convention.
"There is always a choice to be made between (—1)*/2 =i and (-1)"/2 = —i.
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the full space, namely 2P/,
Next, let (—1)=9/4yp, W = £W. As D is even, by equation [D.65} {7,, vp+1} = 0. Hence,

(—1) 9 yp 7, ¥ = —(=1) " iy yp ¥ = 9, U (D.71)

If ¥ is in the + eigenspace, then ~,V is in the F eigenspace. However, all the 7, are invertible.
v, induces a bijection between the + eigenspace to the F eigenspace.

That finally proves that the + eigenspaces must have the same dimension, namely
%20/2 — 9D/2—-1 U

The component of an arbitrary spinor, ¥, in each of these eigenspaces can be found by the
projection operators, Py = 3 (I£(—1)"9/4yp ), since Py + P_ = I and (using equation
and s — t being even)

(~1)E M yp Pl = S (1) iy (T £ (-1 )0

1
(=) A p U 5(_1)(87”/2(’)@—%1)2\1’

1

(=) W £ 5(—1)(S_t)/2(—1)(3_t)/2‘11
1

(_1>(S_t)/4VD+1‘If + 5\1’

1 _

=+ (T (=) yp W)

= +P. V. (D.72)

NN~ -

Since Weyl spinors can be constructed in any even dimension and (by table [D.1)) Majorana
spinors can be constructed when s —¢ = 0,1,2 (mod 8), the double of a Majorana-Weyl spinor
is possible when s —t = 0,2 (mod 8).

D.2 Three space and one time dimension

Up to now, I have considered spinors very generally. For a specific example, consider the case
most relevant to physics, namely s =3 and ¢t = 1.

Then, D = 4, 2P/2 = 4 and there is a unique irreducible representatio of the Clifford algebra
(up to equivalence).

It suffices to guess this representation (and thereby prove its existence too). I will use the
so-called “Weyl representation,”

Vo = LNS %“] where o, = (I,01,09,03), 0, = (I, —01, —09, —03) (D.73)

and o1, 09 & o3 are the Pauli matrices. I have to check this representation is well defined.

n _ [0 o, [0 o n 0 op| |0 o,
,}/a,)/b /Yb,ya - _6_(1 0 &b 0 a_b 0 5_a O
. —Uaa'b + ab&a 0
- | 0 0a0p + 0p04
. —_2nab[ 0
- L 0 _277abl
= —2nu! = the Clifford algebra is satisfied. (D.74)

8Thus far, I have only proven theorems about the uniqueness of representations, not existence.
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Next, it must be shown that the chosen representation is irreducible. Let S be a non-empty
subspace of C* invariant under all ~,.

Therefore, Vv € C* and Va € {0,1,2,3}, v,v € S.

But then, v,7v € S as y,v = v’ for some v’ € S and thus ~v,v" € S.

Likewise, VA1, 2 € C, (AM7a + Xaw)v € S as y,0,%v € S and S is closed under linear
combinations by virtue of being a subspace.

Overall, S is invariant under all products and linear combinations of 7, and thus invariant under
all linear combinations of elements in G = {£T'4}!_,. By direct evaluation (on Mathematica),

1000 0010 0 0 01 0 0 0 —i 0 01 0
(T8 0100 0001 0 0 10 0 0 i 0 0 00 —1
AJa=0=Y oo 1 0l’|l1t 000’0 =1 00[’l0O ioO  O|’|=1 00 0

0001 0100 -1 0 00 -1 00 0 0 1.0 0

[0 -1 0 0] [0 i 0 O -1 00 0 —i 0 0 0

-1 0 00 -1 00 0 0 1.0 0 0 i 0 0

0O 0 0 1]’lo 00 —i|’]0 01 0]’]0 0 —i of”’

0 0 10| [0 O01i O 0 00 —1 0 0 0 i

0 1 0 0] o =1 0 0 0 0 —i 0 0 0 0 1

-1 0 0 0| |-i 0 0 O 0 0 0 i 0 0 —1 0

o 0o o 1/’lo 0o 0 —i|l’|-1i 0 0 O|l’]l0 1 0 0|’

0 0 -1 0] [0 0 =i O 0O i 0 0ol |-10 0 0

[0 0 0 —i] [o 0 =i 0 i 00 0

0 0 —i 0 00 0 —i|l {[0i 0 0

0 —i 0 O0]’[li 0 0 0’00—10}' (D-75)

—-i 0 0 0 0i 0 0 00 0 —i

However, by inspection, complex linear combinations of these matrices can produce any 4 x 4
complex matrix (e.g. look at the 4 matrix subsets {0, 7, 8, 15}, {1, 4, 11, 14}, {2, 3, 12, 13}
and {5, 6, 9, 10} with matrices labelled as per the order in which they are listed above).
Thus, S is invariant under all 4 x 4 matrices = S = C*.

Therefore, the Weyl representation of the Clifford algebra is indeed irreducible.

The Weyl representation is also unitary under the standard inner product of C* since 73 =
and fyZ-T = —7;. As for Weyl spinors,

(_1)(8—75)/4%: 1)1/2
O [ [ O

01 —li0 0

[ 1[ —1011

1
=, _[} (D.76)
w _w
s () | T T D.77
(=1) %, —y (D.77)
z _—Z

span({(1,0,0,0),(0,1,0,0)}) and span({(0,0,1,0),(0,0,0,1)}) are the eigenspaces of left handed
and right handed Weyl spinors respectively. To reflect this, the four-component spinor, ¥, can

be written as ¥ = (wq), where 1, and Y* are two-component Weyl spinors. Undotted and

)—Ca
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dotted indices are left handed and right handed respectively.

As shown by equation My, = —%[”ya,’yb] are Lorentz generators in spinor space. Let
Oup = —i(aa&b —0p0,) and Gg, = —i(&aab — 0p04). Oap and Gy are called left handed and right

handed Lorentz generators respectively because

R R )

. _1 aa&b - ab(}a 0
N 4 0 &ao-b - 5-b0-a
o O
_ { o @ZJ (D.78)
— MU — o 0 % _ Uabwq (D 79)
¢ 0 Tab >_<a &abxa . '

M, ¥ must still be a spinor of the same type as .
Therefore, .1, must be a left handed Weyl spinor and 6,,¥* must be a right handed Weyl
spinor.
Since M, only induces a linear transformation, the spinor indices of o4, and 7., must be (aab)aﬁ
(aab)aﬁ¢@
(6'0,17)&6')_(5 '
This gives the so-called (3,0) and (0, %) representations of the Lie algebra, 0(3,1), namely
My (a) = (0a) 10 and My (X)) = (6ab)d6>'(3 respectively. Furthermore, for o4, and G,

and (G4) 5 respectively = M,V = (

to have the indices they do (in type and position), the spinor indices of the extended Pauli
matrices must be (04)aq and (6%)%“. Finally, by direct evaluation, one finds

0 01 g2 03 0 —01 —02 —03
B 1 —01 0 10'3 —iO'Q ~ & 1 01 0 iO'g —iO'Q
(Jab)a - 5 —02 —iO'g 0 iO'l and (Uab) ﬁ - 5 09 —10'3 0 iO'l (DSO)
—03 109 —ioy 0 o3 109 —ioy 0

This was all at the level of the Lie algebra. To get to the Lie group, one must use the exponential
map. The universal covering group of SO'(3,1) is SL(2, C) and thus the exponential map will
generate representations of SL(2, C), not SO'(3, 1).

Let I + M € SL(2,C) for infinitesimal M. Thus, 1 =det(/+ M) = 1+tr(M) = tr(M) = 0.
Since the Pauli matrices are a basis for traceless 2 x 2 matrices, sl(2,C) = {z04]z; € C*}.
However, that is the complex Lie algebra. To get the real Lie algebra, let

1 1 1
2 = 5([(01 +iK?), 29 = 5([(02 +iK?") and 2, = §(K03 +iK'?)

1
= 2,0, = 5((K‘” +iK®) o, + (K”2 +iK*) oy + (K% +iK'%)03) (D.81)
for K% € R. Not all the K% have been defined yet; that is most conveniently accomplished
(to make connection with the Lie algebra, 0(3,1)) by letting K% = — K% Then,

1
§Kab0'ab = K010'01 + K020'02 + K030'03 + K120'12 + K130'13 + K230'23

1
— 5( K", 4+ K%0y + K%03 + K03 — K0y + K*i0,)

1
:5((K01+1K23)O‘1+(KOQ—f—iKSl)O'Q—I—(K03+1K12)0'3)
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Therefore, sl(2,C) = {1 K®(0,),"| K = —K" € R}.
Finally, as SL(2,C) is simply connected, {N,# = ef*’(u)a"/2| [fab — _[ba ¢ R} is a dense
subset of SL(2,C).

Via equation [D.37] I showed that under v = A%~* = T(A)~'4°T(A), ¥'(z) = T(A)¥. T com-
mented that representation of the Lorentz group, T'(A), could be extended to a representation
of the universal covering group. This is exactly what I will do now using the exponential map.
As the Lorentz generators when acting on four-component spinors are My, T(N) = " Mab/2,
The factor of a half is necessary in the exponential because 0(3,1) is only six-dimensional,

where as K% M,, double counts the 6 independent M,;, via K" M,, = (—K®)(—My,). Thus,

T(N) = e*"Mav/?

%Kab |:(O-ab)a18 B 0 4 :|

[e.e]

() )

=S5 T ey

[(H'b(a'ab)cxﬁ/2 O

(§]

- ab(~ & . D83
[ G ﬂ./z] ( )

0

I have already shown ef*'(a)a’/2 — N, B Let M = KT @ar)y/2

1 N N N - N N
§Kab5'ab = K010'01 + K020'02 + K030'03 + K120'12 + K130'13 + K230'23
1 ,
= 5(—}(0101 — K%0y — K%03 +iK03 — iK%0y +1K%0))
1
= S (K" +iK*)or + (= K” +1K™)oy + (=K% +1K7)0y)
= 20 (D.84)

Then, from M = eKab(&Gb)dﬂ/Q,

M =e 7
— M= — g0 = N7l = M =N
— T(N)U = "Ma/2y

N B
- [(NC;)%;B] . (D.85)

Hence, it must be that under the (3,0) and (0, 3) representations of SL(2,C), left and right

handed Weyl spinors respectively transform as ¢/, = N, 15 and Y'¢ = (N*T)dﬁ-xﬁ. = )‘(B(N**)Bd.

One subtlety of this result (in particular the block diagonal form of eX“"Mat/2) is that although
the representation of the Clifford algebra is irreducible, the induced SL(2, C) representation is
not. The latter’s irreducible components are the spaces of left handed and right handed spinors.
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Since N € SL(2,C) = det(N) = 1, N,#Ny"e,, = eqp and e (N71)
where £,5 and £%° are antisymmetric tensors with ;5 = —1 and &'? = 1.

As €45 and £*? are invariant tensors of SL(2,C) and e*e. 5 = 0%, they can be used to raise
and lower indices. .

Then, Y, = 5@3976 = edﬂ)_(”’(N_*)f.
N FNg e = cap <= €= NeN" in matrix notation. That means

N7le=eNT = —N7le=—eNT = N1l =INT = ¢ ;(N7),7 = 5,3#(]\[*)@'8.
Therefore, X4 = £45X" (N 7*)," = £5.(N*)°x" = (N)4"x;5

Similarly, raising the index on the left handed spinor, 1'® = £2# Py = e*PN 5 Y1,
(NN =¥ = e=NTeN' = eN=NTe = N7 = (N7");%”.
Therefore, 1)’ = 5aﬁ]\7ﬁ7¢7 = (N*l)ﬁo‘»sﬁh/)V = zﬁﬁ(N*l)ﬁa.

Having established these transformation properties, one can now develop the two-component
spinor formalism via tensor products, index raising/lowering etc. like for other tensor types.

SN = e

The two-component spinor formalism was based on writing the full spinor space as a direct
sum of left handed and right handed Weyl spinors. However, I also spent many pages earlier
considering Majorana spinors and it would be incomplete of me not not consider them in the
special case of s —t =3 — 1 = 2 where (by table they do exist.

By definition and theorem a four-component spinor is Majorana if and only if
U — ppt(— 1) UDECIGT — 1 x (1)L (—1)<02C-1GT — — 15T —> TT — —C0.

It suffices to guess C' by forcing it to satisfy theorem [D.5]and equation [D.55] With v =1, p =
—land t = 1, they say CTC = I, vI = —C~,C~! and CT = —C. Guided by the antisymmetry
and the block diagonal nature of the Weyl representation, try

0 10 0
100 0
C=1"0 o0 1 (D.86)
(0 01 0]
0 -1 0 00 10 0 1000
1 0 0 oll=100 o0 0100
Ty _ _
= CC=10 0 o 1llo 00 -1|=]oo1 0|1 (D-87)
0 0 —10/ 0 01 0 0001

C~! = —C by the previous line and thus —Cv,C~! = Cv,C. Also, C can also be written
slightly more compactly as

C = lg 04 where ¢ = [O 1] . (D.88)

123



This notation allows easier checking of the remaining property, —Cv,C~! = ~I. Explicitly,

B 1 le 0 0 o.f e 0] 0 —E0,E
s _{0 —5] {% 0} [0 —5}_{—55(15 0 }
.o 17fo 1] _[-1 o] _
5005—515—[_1 O} {_1 0}—[0 _1]— o
o 1o 1o 1] o 1][-1 o] Jo 1
E= 11 0/ (1 o) |-1 0o T |-t of[0 1] [1o0
~Jo 1[0 —i]Jo 1] _[o 1]fi o] [o i
=1 0 [ioof -1 0] T [=1 0o i] -0
(o 1]fr of[o 1] _f[o 1]fo 1] J1 o0
“E= -1 0/ 0 1) [-1 0o/ T [-1 0o/ [t o] " [0 -1

In summary,
G

0

_ 0
_C’,yacf 1 — |:O.T = ([7 _Ui) .

] =4 since G,

(D.89)

Therefore, the chosen matrix for C' can indeed be used as the charge conjugation matrix. Then,

0 1.0 O w —x
-1 0 0 0 x w
V=14 90 -1 yl | 2
0O 01 O z —y
Meanwhile,
o7 = (v
= ATy
[0 0 1 0] [w*
100 0 1| [a*
|10 0 0] |y
01 0 0] [#
L
= |
_x*
Therefore,
w
—CU =" — v=| "
w*

In the two-component spinor notation, <w) would be denoted as v),. Then,

X

Lol = [ e

wa:é“a’BwﬁE |:1

(D.90)

(D.91)

(D.92)

(D.93)



Conjugation swaps dotted and undotted spinor indices since 9!, = N, P14

= (¢,)* = (N*),”(¥5)* (and likewise for conjugating an initially dotted spinor) which is the
transformation of right handed Weyl spinor as shown earlier. For this reason, (1,)* can be
denoted as 1.

In summary, the most general Majorana spinor for s =3 and t =11is ¥ = (2—?3)
Finally, it is worth checking that despite appearances, spinor representations are not the same
as vector representations. It is often remarked (e.g. by quoting Michael Atiyah) that spinors
are like the square root of a vector. That is because of arguments like the one below.

Let 6% + X% € SO'(3,1) for infinitesimal X . Then, by the defining properties of SO'(3,1),
1 =det(0% + X%)=1+tr(X) = X% =0.

Also, Napy = 0ea(0¢, + X)) (0% + X%) = nap + Xpo + Xap = Xpo = —Xop. Antisymmetry
automatically implies tracelessness; thus 0(3,1) consists of all 4 X 4 antisymmetric matrices.
Therefore, A = eX*"5/2 ¢ SOT(3,1) where S, is a basis (with 6 independent elements) for
4 x 4 antisymmetric matrices. The corresponding group action on four-component spinors is
T(A) = T(N) = eK""Ma/2 The standard basis for 4 x 4 antisymmetric matrices is

0 100 To 010 o 001] [o 0 00
o _f|-r0o00] foooof {0000 o0 10
“=Y10o 000/l |=1000/" o 000l |o-10 o0l

0o 000/ o oool |=1000] o 0o 0o
00 00] 00 0 0
00 01| loo o o
00 0ol loo o 1}' (D-94)
0 -1 00| |00 —10

It can be checked that S, satisfies the Lie algebra generator commutation relations for o(3, 1).
By Rodrigues’ formula and other related identities, if (ng, n,,n.) is a unit vector of R?, then

e¥4 where
0 n, —Mn,
ny -—ng 0

0 0 00 0 0 00 00 0 0
A f0 0 1o Hoo0 0 af 00 0 0
™00 —1 00 ™o 0o ool "™loo0 o0 1
0 0 00 0 -1 0 0 00 -1 0

= 712812 - nySlg -+ TLISQ:J, (D96)
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and thus e?4 = /(=Siz=mySistn2923) ¢ SOT(3,1). The corresponding representation on spinor
space is

T(N) — ee(nzM12_nyM13+nzM23)

o2 0 o3 0 o935 0
0| n. ~ —ny ~ +ng -
—e 0 012 0 013 0 023

i |01 + Ny02 + N203 0
262 0 nx01+ny02+nz03
'ei0ﬁ~c?/2 0
= 0 ei@ﬁ-&’/Q
(i - 5)2 _ nz. Ng — 1Ny, n"“ Ng — 1Ny,
K + 1n, —N, Ny + 1Ny, —N,
2+ +n 0
1 0 n2 + nfl + n?
=1 asl||i]|=1. (D.97)

Then, the exponential can be evaluated to

G =1 [/i0\™
i0n-c/2 __ I Bad > \m
e = mzzo — ( 2) (7 - 0)
e’} 1 1(9 2m o] 1 19 2m+1
S () s (9
— (2m)!'\ 2 — (2m+ 1)1\ 2
= cos(0/2)] +isin(0/2)ii - 7. (D.98)

Notice that a rotation of € has lead to a rotation of only #/2 in the cos and sin terms acting
on spinor space.
e.g. Let 0 = 2r = A = e’ = I as a 27 rotation does nothing. However,

cos(m)l +isin(m)n - & 0
0 cos(m)l +isin(m)7 - &
_ (D.99)

T(N) =

T(N)¥ = —W¥ under a 27 rotation.

Hence, one needs to do a full 27 rotation twice to return the spinor, W, to its original state.
Therefore, the spinor representation really is different to the vector representation. This essen-
tially reflects the fact that the spinor is transforming under SL(2,C), not SO'(3,1). The
SL(2,C)/Zy = SO'(3,1) isomorphism means N and —N both correspond to the same Lorentz
transformation, A. That is why A = I can still lead to T'(INV) = —I; the two are related by the
Zs quotienting.
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Appendix E

Notational conventions

Most, if not all, of these conventions follow those of [25]. To be well defined, some of these
conventions require quite non-trivial concepts and theorems. I will simply be taking them as
assumed knowledge. In such cases, it may help to read appendix [D]if the issue concerns spinors.
There are also times when a result could be placed in the present appendix or in appendix [F]
In such cases, I have chosen not to duplicate results, but instead choose whichever appendix I
think is better suited for that result.

The Einstein summation convention will be in effect at all times.
At all times I will be working in units where ¢ =1 and h = 1.
* denotes complex conjugate.

Given a matrix, M, the inverse, inverse transpose, inverse conjugate transpose and inverse
conjugate are denoted by M, M~T M~ and M ~* respectively.

While many results in my thesis generalise to arbitrary manifolds, at all times I have re-
stricted attention to four-dimensional, orientable, path connected, Lorentzian manifolds with
a (—1,1,1,1) metric signature.

[-, -] denotes a commutator and {-,-} denotes an anticommutator.
SO'(3,1) denotes the proper orthochronous Lorentz group.
All Lie algebras are denoted in fraktur, e.g. sl(2,C) is the Lie algebra of SL(2, C).

Three types of indices - curved space, local Lorentz and spinor - are frequently encountered in
this work. They are represented by Latin letters from the middle of the alphabet, Latin letters
from the start of the alphabet and Greek letterd]| respectively. When working in flat space, I
will use Latin letters from the start of the alphabet.
e.g. The metric would be denoted g,,,,(x) and would transform as
OxP Oxf

Ionn () = 55 9pa(2) (E.1)
under transformations, x — 2/, of the general coordinate group.
Then, one can introduce a vierbeitf| by {e,”(2)0,}2_y such that n., = e,™(2)e," () gmn ().

!There are two types of spinor indices - dotted and undotted - as illustrated below.
2A vierbein is a new tangent space basis.
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The {e," 0 }>_, are only unique up to a Lorentz transformation within the tangent spaaﬂ
e.g. A curved space object such as the Ricci tensor, R,,,(x) can be converted into

Rap(x) = e," (2)e" () R () (E.2)

and then under a local Lorentz transformation, ¢/,” = (A~1)? e,™ for some A € SO'(3,1) (the
proper orthochronous Lorentz group), R,, would transform as

Ry (@) = (A7) (A7) Rea(2) (E.3)

For the collection, e,™, e, * denotes (e,™)~!. Then, {e,,*(z)dz™}3_, is a basis for the cotangent
space and is called the inverse vierbein.

Finally, two-component spinors are required for objects transforming under representations of
SL(2,C) - the universal covering group of SO'(3,1). Such type-(m,n) spin tensors transform
under the “T™/27/2)” yepresentation of SL(2,C) by

Q1 QmO1Qp

¢’ (x) — Na1 Bi. .. Nam 5mN*d1 B, .. N*a_m ﬁmwﬁl---ﬁm&--ﬂn ($) (E4)

for some N € SL(2,C). This representation is irreducible when v is symmetric in its dotted
and undotted indices independently. By equation [E.4] (¢a;-apd; o, ()" transforms as a type-
(n,m) spin tensor. Motivated by that, let ¥q,...apay.-a;, () denote (Vo ...amay-a, ())*.

The three types of indices are lowered an raised by the general metric, Minkowski metric
and Levi-Civita symbol and their inverses respectively. .

e.g. Vi = gmnV" Vo = 0aV?, ¥y = ea[ﬂpﬁ and g = 6&517@6 to lower indices and analogously
with the inverses to raise indices.

Levi-Civita symbols are normalised by €15 = —1, ¢! = 1, gj5 = —1, el = 1, o123 = —1
and "% = 1.
(aa)ad = (1701702703) <E5)
(64)% = 5a6€d6(0a)55 = (I,—01,—09,—03) (E.6)
01,23 = Pauli matrices
1 Y ~ \a
(0ab)a6 = _Z((Ua)ad(ab) P — (9b)ac(0a) ﬂ)
0 ozl 09 o3
_1])—=0y O i —ioy
- 5 —02 —iO'g 0 iO'l <E8)
—03 iO'g —iO'l 0
(G)® 5 = =7 ((30) (1) — (56)**(00) o3)
0 —01 —09 —03
_ 1 01 0 103 —iO’g
- 5 (o) —10'3 0 iO’l <E9)
03 i0'2 —iO'l 0
(oap),” are the Lorentz generators, i.e. it can be shown
{N,’ = 3 K™ ar)a” | K is a constant, real, antisymmetric matrix} (E.10)

3That is why the term, “local Lorentz,” is used to describe the corresponding indices.
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is a dense subset of SL(2, C). Upon a representation of SL(2, C) (e.g. in the space of type-(m,n)
spin tensors), let My, denote the pushforward of o4,. I will (somewhat lazily) call My, Lorentz
generators as well. The “left handed” and “right handed” parts to the Lorentz generator are
denoted by M,z and M ; respectively and are connected to the (full) Lorentz generator by
Maﬁ = %(Uab)aﬁMab and MdB = —%(CNTGb)dBMab.

With (04)aq and (5,)%*, one can convert a local Lorentz vector index into a dotted and undotted

index pair and vice versa by
1 .
Vad = (aa)adV“ and Va = —5(&(1)0‘0“/&@ . (Ell)

The vierbein is also used to transform the covariant derivative from having a general coordinate
to local Lorentz index - just like for normal tensors - by

Ve=1¢,"Vp. (E.12)

For this equation to be consistent with the normal action of V,, (under a metric compatible,
torsion-free connection), one needs to define

1
Ve=1¢€,""0n+ §wabchc (E.13)
1
where wgp. = §(wa + Cuep — Cape) and (E.14)
Cabc = (eanan(ebm) - ebnan(eam))emc . (E15)

These C,,° are called “anholonomy coefficients” and satisfy [e," 0, ,"0n] = C,; %€, Orp.

Similarly, I will frequently be using Vo = (04)aa V¢ and V& = g2Fg48 Vg = (04)**V"as well.
Without vierbeins, Christoffel symbols are denoted by I'", , = 20 (OnGpq + OpGan — Oqnp)-

A series of derivatives acts on all terms enclosed in brackets, e.g. Vg, -V, (Ry) means
there are n derivatives, V,,, ..., V., acting on the product, Ry, with V, acting first and
V., acting last. I will try not to write any ambiguous expressions such as VoV, ¢ which in
principle could mean V*(¢)V,(p) or V*(¢V,p). The only exception to this rule is when there
is a symmetrisation or antisymmetrisation which would make brackets around differentiated
terms ungainly. In such cases the derivatives are taken to act to the extent of the symmetrisa-
tion or antisymmetrisation brackets. For example, in a term like V(O‘Bgﬁv)dﬁwa, the derivative

acts on £ only, not ; explicitly writing something like V(aﬁ, (gﬂv)dﬁ )1 seems too cumbersome -

although in a term like V, 7(o)¢ ) B#VBB Y7, it is unavoidable because the derivative only acts

(a
on o, but the symmetrisation extends beyond that.

I will be working with the Weyl representation of the Dirac matrices,

Yo = {0 ‘B} . (E.16)

Oa
Four-component spinors are denoted in bold, e.g. ¥ = (;_ﬁg) Four-component spinors will

always be denoted as column vectors. When the components are too long to fit in a line, I will
write ¥ = [1)4, X%]7 so that W is still a column.

If o= (i’g), then W denotes (x%,14) = ¥iy.

Any integral stated without bounds implicitly means integrate over all possible values of the
variables comprising the volume element.
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Appendix F

Frequently used identities

Most of the following identities are listed in [25]. T will use them liberally without proof or
explicit mention.

Upon an infinitesimal Weyl transformation, ¢/, = (1 + o)e,™,

g;rm = (1 —20)gmn (F.1)
V! =V,+0oV, -V ()M, (F.2)
izbcd = (1 + 20)Rabcd + nbdvavc(a) - nbcvavd(a) + nacvad(O') — nadVch(O') (F3)
ab = (1 + 20‘) ab T+ nabD(U) + QVQVI,(U) (F4)
R = (1+20)R +60(0) (F.5)
(lzbcd = (1 + 20) abed (FG)
cm o =cm (F.7)
[ will also require some of the finite case. Upon €/, = e¢,™ <= ¢ = =€ 2 gmn,
V! =¢e"(Vy— V(o) My) (F.8)
R =e*(R+60(c) — 6V*(0)V4(0)). (F.9)
When faced with spinor gymnastics, the following identities are invaluable.

YaX® = =9 Xa (F.10)
YaX® = =9 Xa (F.11)
(Ua)ad(‘}b)aﬂ + (Ub>ad(&a)dﬂ = =210, (F.12)
(5a)™(00)as + (55)*" (0a) g = —20a0° (F.13)
(Ua)ad(5b)ao¢ _277ab (F14)
(0%)aa(64)% = =267 67, (F.15)
(O-a)aﬁ'(&b)ﬁﬂ(o-c>ﬁd = Neca (Jb)aa nbc(0a>ad - 77&b<0-c)ozd + igabcd(ad)ad (F16)
(‘}a)dﬁ(ab)ﬁﬁ'(‘}C)ﬁa = nca(6b)aa - 77bc(6a)da - 77ab<&C)da - igabcd(&d>da (F.17)

N 1 :
(Ua)aﬁ(gbc)ﬁd §(nab(ac)aa nac<ab)ad - lgabcd(o-d)ad) (F18)

~ & ([~ \Ba 1 [6 %67 ~ G : ~d\oo

(Uab) B‘(Uc)ﬁ 5(77176( a) - nac(o-b) +1€abcd<0d) ) (Flg)

1 .
(Uab) 5(Uc>,8 é(nbc(a—a)aa nac(o—b)ad - 1€abcd(0d)ad) (FQO)

. 1

(O-a)aﬂ(gbc>5 é(nab(at) - nac(o-b) + 1€abcd( d)aa) . (F21)
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I will regularly require the action of Lorentz generators on different tensors. They are

Mab(¢a) = (Uab)aﬁw,é’
M) = () °
Moy (V) = 6%V — 69, Va
1
Mg () = 5(%6@5 + &y5%a)
Ma[?(wa) =0
Mas(a) =0
1
Ma[a@#) = _(5Wa¢/3 + 5fy5¢a>

For tensors with more than one index, a Leibniz style rule applies index to index, e.g.

Moyp(T) = 6°,T,% — 65T, + 6% T4 — 6% T°, .
The Riemann tensor definition, [V,, V,] = %RadeMcd, written in spinor notation is

1
[Vaa: vﬁfi’] - §Raa53

=R

cd Mcd

Y- R v
oasiu M+ RoapguM

1 a C
where Rad%m/ = 5(0 )aa(Ub)g@’(U d);wRabcd
D 1 a b ~cd
and Raoz/jﬁ',m = _5(‘7 Jac (0 )55(0 )i Rabea -
The following are well known identities of the Riemann tensor and its descendants.

Rapea = — Rapae
Rapea = —Rpaca
Raped = Redab
0 = Raped + Racav + Radbe
0 = VaRaebe + VoRacea + Ve Rieay

Rab = Rcacb
Rab = Rba
R=R"
VPRy = %VGR
Cabcd = Rabcd - 1nacfgbd - 1nbdfiac + 177(1013Rbc + 177bcfiacl - anbcnad + anacnbd
2 2 2 2 6 6

In spinor notation, these properties can be used to define

1 1
Buus = 3(0)oal0")ys R~ 1)

1 i,
Copur = E((Uab)aﬁ(aai)uv + (Uab)ocu(UCd)Vﬁ + (Uab)au(UCd)Bu) (Cabcd - §5ab fcefcd)
2 1 ~a ~ C ~a ~ C ~a ~C 1 e
Copiw = E((U ")as (@) + (6)an (655 + (6%)an(5°) 4,,) <Cabcd + 5w fCefcd)
1
F—_—
12R
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and thereby derive the following identities,

Eopap = Elap)ap)

Oocﬁuu = O(aﬁul/)

Cagir = Clap)
Roipipw = EapCapuv + CapByag + €ap(Capfay + cavepu) F
Raaﬁﬁ'pf/ = 5aﬁ0a,6’m> + %BEaﬂw) + 5aﬁ(5d;1551> + 5dr>55p)F

Cle -
_v B ,
V¥ Coapyu = V(a Eﬁﬂ/)ﬁd
Vo' Cap = V04

GB &~ Bapy)
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Appendix G

Student achievements

As the end of 3rd year beckoned, a looming choice approached. What to study next? Like
my peers, I subjected myself to the seemingly endless series of advertorial presentations about
different physics and mathematics research groups available at UWA. Some may find it curious
that after all the Powerpoints and aesthetically pleasing imagery I chose to try join the group
that promised nothing more than one line - “for Field Theory and Quantum Gravity [FTQG]
projects, please contact Prof. Sergei Kuzenko.” But there was little counterintuition about
my choice. I did not care about publishing papers or conducting groundbreaking research in
an honours or master’s. I wanted to learn as much advanced, but fundamental, physics and
mathematics as I could. And not niche research areas of interest to few; I wanted to gain
skill and knowledge valuable across the mathematical sciences. For that, the FTQG group
seemed the perfect fit. I think my biggest achievement (and a great credit to FTQG group)
in the Master of Physics - more so than any lemma or theorem that I proved in this thesis -
was the progress I made on that path. Producing this document would have been impossible
without learning a highly non-trivial amount of differential geometry & general relativity and
developing significant fluency with spinor gymnastics. Indeed, of the three semesters I spent
in this course, the entirety of the first was dedicated to up-skilling myself in preparation for a
technical project in the FTQG group. As for the project itself, my achievements were more in
presenting existing knowledge in a coherent and self-contained fashion, rather than developing
new knowledge. This is not unusual for master’s projects in the theoretical physics community.
As T hinted in chapter , [20] contains essentially the same results as mine for 2nd order
operators. However, I was not aware of this paper until the last month of my master’s and
I derived my results independently. Also, as I stated in chapter [3| some extensions to the
problem I considered (or related problems) about the conformal d’Alembertian have already
been solved in [I7] and [21]. In practice, I treated the conformal d’Alembertian as more like a
training exercise in becoming comfortable with spinors and higher symmetries before tackling
the massless Dirac operator - a more technically challenging task. My main achievements in
the project were doing and presenting long calculations not readily available in the literature.
During my master’s, I was perplexed by the culture of scientific publication - in particular the
almost complete lack of detailed proofs/calculations and the sheer volume of detail brushed
under the carpet. I wanted to do better. In this spirit, the accursed words, “obviously,”
“clearly,” “easily” and “it can be shown” were all banished as far as possible in my thesis. It
is my hope that any student who completed the same foundational study as I did in the 1st
semester of my course would be able to understand almost everything I have written in this
thesis. To assist in that, I also included appendix [D a comprehensive overview of spinors. It
was not all a solo effort, of course. Other than Sergei, I had help from Emmanouil Raptakis in
particular with my calculations. Although most of the work is my own, he guided me in how
to approach the problems and also walked me through some easier cases (e.g. flat space).
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